forked from HarryBeadle/ncgraph
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ncgraph.py
742 lines (682 loc) · 30.1 KB
/
ncgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
import curses
import math
import numpy
# Just for reference: Unicode box-drawing characters
# ─│┌┐└┘├┤┬┴┼
LEFTBORDER = 7
BOTTOMBORDER = 2
debug_file = open("debug.output", 'w')
def DEBUG(string):
debug_file.write("%s\n" % string)
class DataSeries(object):
def __init__(self, X, Y, label, color=0):
assert (len(X) == len(Y))
self.X = X.copy()
self.Y = Y.copy()
self.label = label
self.length = len(X)
self.color = color
# TODO Currently unused
class Lim(object):
def __init__(self, lower, upper):
self.set(lower, upper)
def set(self, lower, upper):
self.lower = lower
self.upper = upper
def range(self):
return self.upper - self.lower
class Interval(object):
def __init__(self, a, b):
self.a = a
self.b = b
"""
Checks if the interval contains the point/value p.
"""
def contains(self, p):
# As an interval could be decreasing, there are two possible cases how an interval
# could contain a value. We have to test them both here.
return (p >= self.a and p <= self.b) or (p <= self.a and p >= self.b)
"""
Returns a (increasing) list of all integer values between a and b plus a and b themselves.
As the interval could be defined with a > b and the returned list here is always increasing,
the direction could be inverted.
"""
def arange(self):
# The rounding operations are required for range() to work. The direction of rounding
# is determined so that the range does NOT contain the values themselves so that they
# can be appended afterwards.
if self.a < self.b:
a,b = self.a, self.b
else:
a,b = self.b, self.a
return [a] + list(range(math.floor(a)+1, math.floor(b))) + [b]
"""
Returns the point of intersection of the lines passing through a2,a1 and b2,b1.
a1: [x, y] a point on the first line
a2: [x, y] another point on the first line
b1: [x, y] a point on the second line
b2: [x, y] another point on the second line
"""
# Inspired by / Taken from https://stackoverflow.com/a/42727584/805673
# Returns errorcode, x, y; errorcode == 0 if successful.
# After calculating the intersection of the two lines, we additionally check
# if this is a valid intersection for the two line segments, i.e. check if the
# found point is between the two points of each line segment.
def get_intersectBak(a1, a2, b1, b2):
s = numpy.vstack([a1,a2,b1,b2]) # s for stacked
h = numpy.hstack((s, numpy.ones((4, 1)))) # h for homogeneous
l1 = numpy.cross(h[0], h[1]) # get first line
l2 = numpy.cross(h[2], h[3]) # get second line
x, y, z = numpy.cross(l1, l2) # point of intersection
if z == 0: # lines are parallel
return -1, None, None
x,y = (x/z, y/z) # The points are defined as (x, y, 1)
# Now check if the point we have found is on the two line segments
# The following check is not safe because of numeric issues (especially for horizontal and vertical lines)
#if Interval(a1[0], a2[0]).contains(x) \
# and Interval(b1[0], b2[0]).contains(x) \
# and Interval(a1[1], a2[1]).contains(y) \
# and Interval(b1[1], b2[1]).contains(y):
# return 0, x, y
# Instead, let's check if we have to move something between 0% and 100% of the
# distance between two points:
# The point we found is the point of a line segment plus a relative amount t of the
# connection vector to the other point of that line segment:
# (x,y) = a1 + (a2-a1) * t
# (x,y) - a1 = (a2-a1) * t
b = numpy.array([x-a1[0], y-a1[1]])
A = numpy.array([[a2[0]-a1[0]], [a2[1]-a1[1]]])
t = numpy.linalg.lstsq(A, b, rcond=None)[0][0] # First index for return-struct-unpacking, second for solution-indexing
if Interval(0,1).contains(t):
return 0, x, y
else:
return -1, None, None
def get_intersect(a1, a2, b1, b2):
# v = vector from p1 to p2
# line segment = p1 + v * [0..1]
a = numpy.array(a1).reshape(2,1)
a2 = numpy.array(a2).reshape(2,1)
b = numpy.array(b1).reshape(2,1)
b2 = numpy.array(b2).reshape(2,1)
va = a2 - a
vb = b2 - b
# a + va * ta = b + vb * tb
# => a - b = vb * tb - va * ta
# => a - b = (vb, -va) * (tb ta)^T = A * (tb ta)^T
A = numpy.hstack((vb, -va))
t, residuals, rank, singularvals = numpy.linalg.lstsq(A, a-b, rcond=None)
if rank < 2:
return -1, None, None
i = Interval(0,1)
if i.contains(t[0]) and i.contains(t[1]):
p = a + va * t[1]
return 0, p[0,0], p[1,0] # p.shape == (2,1) (it's 2D)
return -1, None, None
class Mapping(object):
def __init__(self, x_from, x_to, hbin_from, hbin_to, y_from, y_to, vbin_from, vbin_to):
self.x_from = x_from
self.x_to = x_to
self.y_from = y_from
self.y_to = y_to
self.hbin_from = hbin_from
self.hbin_to = hbin_to
self.vbin_from = vbin_from
self.vbin_to = vbin_to
self.hbins_per_x = (hbin_to - hbin_from) / (x_to - x_from)
self.vbins_per_y = (vbin_to - vbin_from) / (y_to - y_from)
def map(self, x, y, rounding=True):
return self.mapx(x, rounding), self.mapy(y, rounding)
def mapx(self, x, rounding=True):
# The nice thing about these mappings is that if any direction is reversed, this
# effect is automatically fixed by the quotient hbins_per_x.
# For example, if the x-direction is reversed (i.e. x_from > x_to), the denominator of
# hbins_per_x is negative. Then, for any valid/fitting x, (x - self.x_from) is negative,
# too. The result of the division indicates which fraction of the whole hbin-interval we
# have to advance. The same holds true for the bin indexes.
# Therefore, we can ignore the directions of x, h, y and v here.
res = (x - self.x_from) * self.hbins_per_x + self.hbin_from
if rounding:
res = numpy.round(res)
res = res.astype(int)
return res
def mapy(self, y, rounding=True):
res = (y - self.y_from) * self.vbins_per_y + self.vbin_from
if rounding:
res = numpy.round(res)
res = res.astype(int)
return res
def fits(self, x, y):
return self.fitsx(x) and self.fitsy(y)
def fitsx(self, x):
return Interval(self.x_from, self.x_to).contains(x)
def fitsy(self, y):
return Interval(self.y_from, self.y_to).contains(y)
def nofit(self, x, y):
# Ensure that we are working on arrays
x = numpy.array(x)
y = numpy.array(y)
# Determine left, right, top, bottom borders which is dependent on the ordering of
# the from-to-values
left = min(self.x_from, self.x_to)
right = max(self.x_from, self.x_to)
bottom = min(self.y_from, self.y_to)
top = max(self.y_from, self.y_to)
# For each border, determine if the value does not fit because it has crossed out
# of the drawing area at that border
outside = (x < left) * 1
outside |= (x > right) * 2
outside |= (y < bottom) * 4
outside |= (y > top) * 8
return outside
def mapLine(self, x_start, y_start, x_end, y_end):
# We have to draw something on the screen if either both points are in the plottable area
# or at least one point is in the plottable area (then, we need to determine the intersection
# with the bounding-box of the drawing area to know the point the line will be connected to).
# But in fact, there is a third possibility: If none of the points is in the drawing area,
# there could be two intersections with the bounding-box (like the line entering and leaving
# the area) and we would have to draw the connection between these two intersections.
# Summarizing, the sum of points in the drawing area and the number of intersections with the
# bounding box need to be 2.
# Due to numeric issues, values can be in the drawing area AND intersect with the borders.
# Therefore, we collect the values in a set() after mapping. After mapping, the intersection
# and the point itself will most probably be the same and not be added twice to the set.
mapping_points = set()
# First, check for the two points if they are in the drawing area
xlim = Interval(self.x_from, self.x_to)
ylim = Interval(self.y_from, self.y_to)
if self.fits(x_start, y_start):
mapping_points.add(self.map(x_start, y_start))
if self.fits(x_end, y_end):
mapping_points.add(self.map(x_end, y_end))
# Now, check for intersections with the drawing area bounding box, for speedup only check
# if more points are missing.
if len(mapping_points) != 2:
a = (x_start, y_start)
b = (x_end, y_end)
c0 = (self.x_from, self.y_from) # corner point, lower left
c1 = (self.x_from, self.y_to) # upper left
c2 = (self.x_to, self.y_to) # upper right
c3 = (self.x_to, self.y_from) # lower right
error, x, y = get_intersect(a, b, c0, c1)
if not error:
mapping_points.add(self.map(x,y))
error, x, y = get_intersect(a, b, c1, c2)
if not error:
mapping_points.add(self.map(x,y))
error, x, y = get_intersect(a, b, c2, c3)
if not error:
mapping_points.add(self.map(x,y))
error, x, y = get_intersect(a, b, c3, c0)
if not error:
mapping_points.add(self.map(x,y))
# Now, if we have exactly two mapping points, we will go on
if len(mapping_points) != 2:
return []
# Now, continuing with a list so that we can consider one point the start
# and the other point the end of the line segment.
mapping_points = list(mapping_points)
# For the sampling points of the mapping, we determine if it is a flat or a steep line
# (with respect to the mapped bins).
# If it is steep, we use all integers in the y-interval; if it is flat, use the x-interval. This
# prevents us from having a non-continuous line or even no line at all, imagine a completely vertical
# line ...
DEBUG("mapping_points: {}".format(str(mapping_points)))
#ah, av = self.map(mapping_points[0][0], mapping_points[0][1], rounding=False)
#bh, bv = self.map(mapping_points[1][0], mapping_points[1][1], rounding=False)
ah, av = mapping_points[0][0], mapping_points[0][1]
bh, bv = mapping_points[1][0], mapping_points[1][1]
if bv-av == 0 and bh-ah == 0:
return []
is_steep = (bh-ah == 0) or (abs((bv-av)/(bh-ah)) > 1)
DEBUG(str(is_steep))
if is_steep: # swap horizontal and vertical for the following calculations (straight line equation)
ah, av, bh, bv = av, ah, bv, bh
slope = (bv-av) / (bh-ah)
line = []
for h in Interval(ah, bh).arange():
v = (h-ah) * slope + av
h, v = int(round(h)), int(round(v))
point = (h,v) if not is_steep else (v,h)
line.append(point)
return line
class Grapher(object):
seriesList = []
legend = False
colorList = [2, 3, 4, 5, 6, 7]
autoAxis = True
draw_lines = True
def __init__(self, window):
# Reset seriesList for consecutive calls
self.seriesList = []
# Initialize borders
self.border_left = LEFTBORDER
self.border_bottom = BOTTOMBORDER
# Setup the window
self.setWindow(window)
# Initalise color
curses.start_color()
curses.use_default_colors()
for i in range(curses.COLORS):
curses.init_pair(i+1, i, -1)
def setWindow(self, window):
self.window = window # TODO: Setup borders with window
self.getPlotArea()
def getPlotArea(self):
self.height, self.width = self.window.getmaxyx()
self.left = self.border_left
self.right = self.width-1
self.top = 0
self.bottom = self.height-1-self.border_bottom
def setAxis(self, x_min=0, x_max=0, y_min=0, y_max=0, auto=False):
self.autoAxis = auto
self.x_min = x_min
self.x_max = x_max
self.y_min = y_min
self.y_max = y_max
"""
If self.autoAxis is True, scans all the data series in self.seriesList
and determines x_min, x_max, y_min, y_max.
"""
def updateAxis(self):
if self.autoAxis:
seriesXMins = []
seriesXMaxs = []
seriesYMins = []
seriesYMaxs = []
for ds in self.seriesList:
seriesXMins.append(min(ds.X))
seriesXMaxs.append(max(ds.X))
DEBUG("Series XMax %f" % max(ds.X))
seriesYMins.append(min(ds.Y))
seriesYMaxs.append(max(ds.Y))
self.x_min = min(seriesXMins)
self.x_max = max(seriesXMaxs)
self.y_min = min(seriesYMins) - 0.1 * (max(seriesYMaxs) - min(seriesYMins))
self.y_max = max(seriesYMaxs) + 0.1 * (max(seriesYMaxs) - min(seriesYMins))
def autosize(self):
self.autoAxis = True
self.redraw()
"""
The next x methods: quick and dirty resize and move.
"""
def getxsize(self):
center = (self.x_max + self.x_min) / 2
size = self.x_max - self.x_min
return (center, size)
def setxsize(self, center, size):
self.autoAxis = False
self.x_max = center + size / 2
self.x_min = center - size / 2
self.redraw()
def getysize(self):
center = (self.y_max + self.y_min) / 2
size = self.y_max - self.y_min
return (center, size)
def setysize(self, center, size):
self.autoAxis = False
self.y_max = center + size / 2
self.y_min = center - size / 2
self.redraw()
def changex(self, relmove, relzoom):
center, size = self.getxsize()
center = center + relmove * size
size = size * relzoom
self.setxsize(center, size)
def zoominx(self):
self.changex(0, 3/4)
def zoomoutx(self):
self.changex(0, 4/3)
def moveright(self):
self.changex(.2, 1)
def moveleft(self):
self.changex(-.2, 1)
def changey(self, relmove, relzoom):
center, size = self.getysize()
center = center + relmove * size
size = size * relzoom
self.setysize(center, size)
def zoominy(self):
self.changey(0, 3/4)
def zoomouty(self):
self.changey(0, 4/3)
def moveup(self):
self.changey(.2, 1)
def movedown(self):
self.changey(-.2, 1)
"""
The next methods: Determine nice grid points
"""
def getgridpoints(self, size, minNum, zmin, zmax):
# maximum allowed distance between two grid points
maxDistance = size / minNum
maxMagnitude = math.log10(maxDistance)
# upper = 100 or 1 or .00001 or something, but it's bigger than maxDistance,
# so .1 * upper < maxDistance < upper
upper = 10 ** math.ceil(maxMagnitude)
upperMagnitude = upper
candidates = [.5 * upper, .25 * upper, .2 * upper, .1 * upper]
DEBUG("size = {}, maxdist = {}, upper = {}".format(size, maxDistance, upper))
distance = None
for candidate in candidates:
if candidate < maxDistance:
distance = candidate
break
if distance == None:
raise Exception('There should be at least .1 * upperBound smaller than maxDistance!')
# distance is now a value like 250, 1000, .5, .00002
# now we have to find the values between min and max that match
# divide the lower bound of the axis by the distance, ceil(), and add distance as long as we are smaller than the upper bound of the axis
gridpoints = []
point = math.ceil(zmin / distance) * distance
while point < zmax:
gridpoints.append(point)
point = point + distance
return gridpoints
def getxgrid(self):
center, size = self.getxsize()
return self.getgridpoints(size, 2, self.x_min, self.x_max)
def getygrid(self):
center, size = self.getysize()
return self.getgridpoints(size, 3, self.y_min, self.y_max)
def plotGridlines(self):
return # TODO deactivated until we have nicer color support
xgrid = self.getxgrid()
ygrid = self.getygrid()
for x in xgrid:
col = self.mapx(x)
for row in range(self.top, self.bottom):
self.window.addstr(row, col, '|') # TODO Replace by unicode box-drawing character
for y in ygrid:
row = self.mapy(y)
for col in range(self.left, self.right):
self.window.addstr(row, col, '-') # TODO see above
def plotGrid(self):
if not self.border_bottom or not self.border_left:
return
xgrid = self.getxgrid()
ygrid = self.getygrid()
for col in range(self.left, self.right+1):
self.window.addstr(self.bottom+1, col, '─')
for row in range(self.top, self.bottom+1):
self.window.addstr(row, self.left-1, '│')
self.window.addstr(self.bottom+1, self.left-1, '└')
for x in xgrid:
col = self.mapping.mapx(x)
text = str(x)
self.window.addstr(self.bottom+1, col, '┴') # self.bottom+1 == self.height-2 (line before last line)
if col + len(text) > self.width-1:
col = self.width-1 - len(text)
self.window.addstr(self.bottom+2, col, text) # self.bottom+2 == self.height-1 (last line)
for y in ygrid:
row = self.mapping.mapy(y)
self.window.addstr(row, self.border_left-1, '├')
text = str(y)
# The left-border text length should be <= border_left-1 --> len <= border_left-2 + " "
if len(text) > self.border_left-2:
text = text[0:self.border_left-2] + " "
else:
text = " " * (self.border_left-2-len(text)) + text + " "
self.window.addstr(row, 0, text)
"""
Plots the coordinate system axis, the ordinate and abscissa.
"""
# TODO If the coordinate base lies outside of the drawing area, what will happen?
def plotAxis(self):
# Calculate x, y values at y, x axis
centercol, centerrow = self.mapping.map(0, 0)
# Plot y axis
if self.mapping.fitsx(0):
for row in range(self.top, self.bottom+1):
self.window.addstr(row, centercol, "│")
self.window.addstr(self.top, centercol, "↑") # arrow
# Plot x axis
if self.mapping.fitsy(0):
for col in range(self.left, self.right+1):
self.window.addstr(centerrow, col, "─")
self.window.addstr(centerrow, self.right, "→") # arrow
# Plot origin
if self.mapping.fits(0, 0):
self.window.addstr(centerrow, centercol, "┼")
def toggleLegend(self):
self.legend = not self.legend
self.redraw() # this calls updateLegend(), too
def toggleTicks(self):
if self.border_left and self.border_bottom:
self.border_left = 0
self.border_bottom = 0
else:
self.border_left = LEFTBORDER
self.border_bottom = BOTTOMBORDER
self.redraw()
def toggleLines(self):
self.draw_lines = not self.draw_lines
self.redraw()
"""
If self.legend is True, plots a legend box in the upper right corner.
"""
def updateLegend(self):
if not self.legend:
return
y = 0
labelLengths = []
for ds in self.seriesList:
labelLengths.append(len(ds.label))
x = self.right+1 - max(labelLengths)
for ds in self.seriesList:
self.window.addstr(y, x, " "*max(labelLengths), curses.color_pair(ds.color) | curses.A_REVERSE)
self.window.addstr(y, x, ds.label, curses.color_pair(ds.color) | curses.A_REVERSE)
y += 1
def updateMapping(self):
self.mapping = Mapping(self.x_min, self.x_max, self.left, self.right, self.y_min, self.y_max, self.bottom, self.top)
def plotAll(self):
# The naive approach here is to plot all lines between data points first (so that they
# end up in the background) and then plot all data points on top of them. This works but
# slows down the application if there are a lot of data points involved. Maybe, this is
# due to the fact that for each connection line, we have to determine if it will be drawn
# which is done by checking if the start and end point are in the drawing area and, if not,
# if there are intersections with the drawing-area-borders.
# 1. To speed up, we have a vectorized Mapping.nofit() method which checks for each data
# point if is is not in the drawing area and if so, encodes on which side(s) of the
# drawing area it lies. Then, by checking if two consecutive data points are outside
# of the drawing area on the same side (e.g. both points are on the left side of the
# drawing area), we can omit the connection line because there is no chance of the line
# crossing the drawing area borders. Furthermore, we only determine if the points are
# in the drawing area once in this method here (it could be done once more in the
# mapLine() or map() method but that's not our business here!)
# 2. Furthermore, we check if two consecutive points which should be are mapped on the same
# pixel. If so, we can skip one of that points and furthermore skip drawing that line. But
# as it seems to me that drawing the same point twice yields no performance penalty (I guess
# it just corresponds to setting a value in the underlying curses-array), we just draw every
# point.
for ds in self.seriesList:
# First, determine where the data points lie outside of the drawing area
outsides = self.mapping.nofit(ds.X, ds.Y)
# 1. We can omit a line if two consecutive points share a nofit-direction
# We only have to calculate this if we actually want to draw the lines
if self.draw_lines:
omitlines = outsides[0:-1] & outsides[1:]
omitlines = numpy.append(omitlines, 15) # Hack so that the array sizes stay the same for iterating
# 2. If two consecutive points are the same, omit the lines, too. To do so,
# pre-calculate the mapping values.
cols = numpy.empty(outsides.shape) # Pre initialize arrays for the mappings so that they have the
rows = numpy.empty(outsides.shape) # same shape as the other array
cols[outsides==0] = self.mapping.mapx(ds.X[outsides==0]) # Map the values
rows[outsides==0] = self.mapping.mapy(ds.Y[outsides==0])
cols = cols.astype(int) # Mapping.map() returns integer arrays but the types are changed when assigning
rows = rows.astype(int) # to the bigger arrays. Ensure the types here again.
# Try to draw the lines and draw the points
for i in range(len(outsides)):
# First try to draw the line if it is not obvious that it will not be drawn
if self.draw_lines and not omitlines[i] and (rows[i], cols[i])!=(rows[i+1], cols[i+1]):
ax, ay, bx, by = ds.X[i], ds.Y[i], ds.X[i+1], ds.Y[i+1]
DEBUG(str(self.mapping))
DEBUG("{}, {}, {}, {}".format(ax, ay, bx, by))
for col, row in self.mapping.mapLine(ax, ay, bx, by):
self.window.addstr(row, col, "·", curses.color_pair(ds.color))
# Then, draw the (current) point
if not outsides[i]:
# The value is plottable, map it to a (px, py) plot location.
# col, row = self.mapping.map(ds.X[i],ds.Y[i])
# Plot the point at that location.
self.window.addstr(rows[i], cols[i], "+", curses.color_pair(ds.color))
"""
DEPRECATED APPROACH
# Plot the (straight) connection lines between the data points
for ds in self.seriesList:
for i in range(ds.length-1):
ax, ay, bx, by = ds.X[i], ds.Y[i], ds.X[i+1], ds.Y[i+1]
DEBUG(str(self.mapping))
DEBUG("{}, {}, {}, {}".format(ax, ay, bx, by))
for col, row in self.mapping.mapLine(ax, ay, bx, by):
self.window.addstr(row, col, "·", curses.color_pair(ds.color))
# Plot the data points in front of the lines
for ds in self.seriesList:
DEBUG("NOTE ds.length %i" % ds.length)
for i in range(ds.length):
x, y = ds.X[i], ds.Y[i]
# Check the value lies in the plottable area.
if self.mapping.fits(x, y):
# The value is plottable, map it to a (px, py) plot location.
col, row = self.mapping.map(x,y)
# Plot the point at that location.
self.window.addstr(row, col, "+", curses.color_pair(ds.color))
"""
def clearPlotArea(self):
self.window.addstr(0, 0, " ")
self.window.clrtobot()
def clearData(self):
self.seriesList = []
def plot(self, X, Y, label="myData"):
# Add the new data to the seriesList.
self.seriesList.append(DataSeries(numpy.array(X), numpy.array(Y), label, color=self.colorList[len(self.seriesList)]))
self.redraw()
def redraw(self):
# Determine the new size of the plotting area
self.getPlotArea()
# Clear the screen of any current plots.
self.clearPlotArea()
# Update axis limits
self.updateAxis()
# Update the mapping between x,y and row,col
self.updateMapping()
# Plot the background grid lines
self.plotGridlines()
# Plot axis lines
self.plotAxis()
# Re-plot each DataSeries.
self.plotAll()
# Plot the grid points
self.plotGrid()
# Update the legend.
self.updateLegend()
class Figure(object):
def __init__(self):
self.seriesList = []
def plot(self, x, y, label=""):
self.seriesList.append(DataSeries(x, y, label))
def show(self):
curses.wrapper(lambda stdscr: self.drawingloop(stdscr))
def drawingloop(self, stdscr):
stdscr.clear()
curses.curs_set(False)
ax = Grapher(stdscr)
for s in self.seriesList:
ax.plot(s.X, s.Y, s.label)
# DEBUG
for i in range(0):
ax.moveup()
colornum = 0
while True:
k = stdscr.getkey()
if k == 'q':
break
elif k == 'KEY_RESIZE':
ax.redraw()
elif k == 'r':
ax.redraw()
elif k == 'g':
ax.toggleLegend()
elif k == 't':
ax.toggleTicks()
elif k == 'c':
ax.toggleLines()
elif k == 'l':
ax.moveright()
elif k == 'h':
ax.moveleft()
elif k == 'j':
ax.movedown()
elif k == 'k':
ax.moveup()
elif k == 'w':
ax.zoominy()
elif k == 's':
ax.zoomouty()
elif k == 'a':
ax.zoomoutx()
elif k == 'd':
ax.zoominx()
elif k == 'x':
ax.autosize()
else:
stdscr.addstr(0,0,k)
def plot(x, y, label=""):
fig = Figure()
fig.plot(x, y, label)
fig.show()
"""
Convenience function to convert rising/falling-edge interrupt-timestamps and associated values into a plottable signal.
Assuming a digital signal that was recorded as (timestamp, value)-pairs while the value describes if we observed
a rising or a falling edge, this function converts the two lists timestamps and values into two corresponding
lists which, when plotted, look like the digital signal. In fact, this step only consists of repeating each samples
value at the timestamp of the next sample so that we get a nice chain of rectangles.
Although this implementation looks a little bit shitty, it is included here as a tribute to my friend learning programming
right now who had the task to implement this function. Compared to what happens when plotting the values, the inefficiency
of this implementation here is negligible.
"""
def interrupts2signal(Zeitpunkte, Werte): # German: Zeitpunkte = timestamps, Werte = values, neu = new
# Lists containing the additional points so that the plot ends up nicely
Werte_neu=[]
Zeitpunkte_neu=[]
# Artificial for-loop
i=0
while i<len(Werte):
Werte_neu.append(Werte[i])
Zeitpunkte_neu.append(Zeitpunkte[i])
if i+1<len(Werte):
Werte_neu.append(Werte[i])
Zeitpunkte_neu.append(Zeitpunkte[i+1])
# Part of the artificial for-loop
i=i+1
return Zeitpunkte_neu, Werte_neu
if __name__ == '__main__':
import numpy
import math
import time
#m = Mapping(-3, 3, 0, 10, -3, 3, 0, 10)
#m.mapLine(-5,-12, 1,2)
# Determine example plots
x = numpy.arange(-11.5, 13.5, .001)
#x = numpy.array([0, .1]) # DEBUG
#ya = [math.sin(i) for i in x]
#yb = [(1/4)*math.sin(4*i) for i in x]
#yc = [math.sin(i) + (1/4)*math.sin(4*i) for i in x]
ya = numpy.sin(x)
yb = 1/4 * numpy.sin(4*x)
yc = numpy.sin(x) + 1/4*numpy.sin(4*x)
yd = numpy.cos(x) + 1/4*numpy.cos(4*x)
print("First, demonstrating a direct plot ...")
time.sleep(1)
plot(x, ya, "sin(x)")
# exit() # DEBUG
print("Now, demonstrating multiple plots in a Figure object.")
time.sleep(1)
f = Figure()
f.plot(x, ya, "sin(x)")
f.plot(x, yb, "(1/4)sin(4x)")
f.plot(x, yc, "sin(x)+(1/4)sin(4x)")
f.plot(x, yd, "cos(x)+1/4*cos(4*x)")
f.show()
print("And, Figure objects can be reused (shown again) after they have been closed.")
time.sleep(1)
f.show()