-
Notifications
You must be signed in to change notification settings - Fork 0
/
skripsie.nls
82 lines (77 loc) · 4.17 KB
/
skripsie.nls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
\begin{thenomenclature}
\nomgroup{A}
\item [{$CT$}]\begingroup Computed tomography\nomeqref {3.0}
\nompageref{14}
\item [{$DAG$}]\begingroup Directed acyclic graph\nomeqref {4.3}
\nompageref{27}
\item [{$DCNN$}]\begingroup Deep convolutional neural network\nomeqref {2.0}
\nompageref{9}
\item [{$GAN$}]\begingroup Generative Adversarial Networks\nomeqref {6.0}
\nompageref{40}
\item [{$MNIST$}]\begingroup Modified national institute of standards and technology\nomeqref {4.3}
\nompageref{26}
\item [{$NN$}]\begingroup Neural network\nomeqref {0}\nompageref{iii}
\item [{$OCR$}]\begingroup Optical character recognition\nomeqref {2.0}
\nompageref{9}
\item [{$OMR$}]\begingroup Optical mark recognition\nomeqref {0}
\nompageref{iii}
\item [{$PGM$}]\begingroup Probabilistic graphical model\nomeqref {0}
\nompageref{iii}
\nomgroup{S}
\item [{$\delta$}]\begingroup Dirac delta function maps any function to its value at zero\nomeqref {3.0}
\nompageref{14}
\item [{$\sigma(z)$}]\begingroup Normalization function in a neural network\nomeqref {4.1}
\nompageref{24}
\item [{$\theta$}]\begingroup Angle of summation line in the Radon transform\nomeqref {3.0}
\nompageref{14}
\item [{$A$}]\begingroup Random variable representing an answer for a specific question\nomeqref {C.0}
\nompageref{47}
\item [{$b$}]\begingroup Bias variable added to allow a neuron to have an offset in its output\nomeqref {4.0}
\nompageref{24}
\item [{$BE_i$}]\begingroup Random variable representing bubble evidence obtained form image processing of the digit at index $i$\nomeqref {C.1}
\nompageref{49}
\item [{$BI_i$}]\begingroup Random variable representing the bubbles the student to colour in for digit $i$\nomeqref {C.1}
\nompageref{50}
\item [{$c$}]\begingroup Number of inputs to a neuron\nomeqref {4.0}
\nompageref{24}
\item [{$CE_i$}]\begingroup Random variable representing a character evidence obtained form image processing at and arbitrary index $i$\nomeqref {C.1}
\nompageref{49}
\item [{$D_i$}]\begingroup Random variable representing a digit in column $i$ for a answer or student number block\nomeqref {C.0}
\nompageref{48}
\item [{$DE$}]\begingroup Random variables representing a digit evidence obtained form image processing\nomeqref {C.8}
\nompageref{51}
\item [{$DI$}]\begingroup Random variables all the digit intended by the student\nomeqref {C.8}
\nompageref{51}
\item [{$f(x, y)$}]\begingroup Two dimensional function that a Radon transform is applied over\nomeqref {3.0}
\nompageref{14}
\item [{$G(r,\theta)$}]\begingroup Radon transform defined over $r$ and $\theta$\nomeqref {3.0}
\nompageref{14}
\item [{$G_\theta(r)$}]\begingroup The Randon transform's values at a given $\theta$\nomeqref {3.0}
\nompageref{14}
\item [{$I$}]\begingroup Random variable representing the test image\nomeqref {C.0}
\nompageref{47}
\item [{$k$}]\begingroup Index value for a specific input neuron\nomeqref {4.0}
\nompageref{24}
\item [{$n$}]\begingroup Number of bubbles of template sheet\nomeqref {3.1}
\nompageref{16}
\item [{$p(i)$}]\begingroup Probability of digit at index $i$\nomeqref {4.2}
\nompageref{25}
\item [{$r$}]\begingroup Length of perpendicular offset of the line in a Radon transform\nomeqref {3.0}
\nompageref{14}
\item [{$S$}]\begingroup Random variable representing the possible student number\nomeqref {C.0}
\nompageref{47}
\item [{$Sn$}]\begingroup Random variable representing the sign of a specific answer\nomeqref {C.0}
\nompageref{48}
\item [{$w_{i}$}]\begingroup Weight value at index $i$\nomeqref {4.0}
\nompageref{24}
\item [{$x$}]\begingroup Horizontal coordinate value in two dimensional plane\nomeqref {3.0}
\nompageref{14}
\item [{$x_{i}$}]\begingroup Input value at index $i$\nomeqref {4.0}
\nompageref{24}
\item [{$y$}]\begingroup Vertical coordinate value in two dimensional plane\nomeqref {3.0}
\nompageref{14}
\item [{$z$}]\begingroup Weighted sum of a neuron's inputs and internal variables\nomeqref {4.0}
\nompageref{24}
\item [{$z_k$}]\begingroup Weighted sum of a neuron's inputs and internal variables at index $k$ in the specific layer\nomeqref {4.0}
\nompageref{24}
\end{thenomenclature}