Skip to content

Latest commit

 

History

History
95 lines (69 loc) · 11.2 KB

index.md

File metadata and controls

95 lines (69 loc) · 11.2 KB

Knowledgeeembedding

Knowledge Embedding

News and updates

  • Sept. 26, 2022: Initial webpage rendering!
  • Sept. 28, 2022: Update the document!

Overview

Welcome to the Knowledge Embedding Dataset project!

What is Knowledge Embedding Dataset

....

Research Team

....

Citations and publications

....

References

Knowledge Injection and Visual concept extraction

  • Hu Z, Ma X, Liu Z, et al. Harnessing deep neural networks with logic rules[J]. arXiv preprint arXiv:1603.06318, 2016. paper. code.
  • Ning G, Zhang Z, He Z. Knowledge-guided deep fractal neural networks for human pose estimation[J]. IEEE Transactions on Multimedia, 2017, 20(5): 1246-1259. paper. code.
  • Shen Y, Deng Y, Yang M, et al. Knowledge-aware attentive neural network for ranking question answer pairs[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018: 901-904. paper.
  • Kursuncu U, Gaur M, Sheth A. Knowledge infused learning (k-il): Towards deep incorporation of knowledge in deep learning[J]. arXiv preprint arXiv:1912.00512, 2019. paper.
  • Ge Y, Xiao Y, Xu Z, et al. A peek into the reasoning of neural networks: Interpreting with structural visual concepts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 2195-2204. paper.
  • Shevchenko V, Teney D, Dick A, et al. Reasoning over vision and language: Exploring the benefits of supplemental knowledge[J]. arXiv preprint arXiv:2101.06013, 2021. paper
  • Sharifzadeh S, Baharlou S M, Tresp V. Classification by attention: Scene graph classification with prior knowledge[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(6): 5025-5033. paper

Knowledge Guide

  • Marino K, Salakhutdinov R, Gupta A. The more you know: Using knowledge graphs for image classification[J]. arXiv preprint arXiv:1612.04844, 2016. paper.
  • Marino K, Salakhutdinov R, Gupta A. The more you know: Using knowledge graphs for image classification[J]. arXiv preprint arXiv:1612.04844, 2016. paper.
  • Fang Y, Kuan K, Lin J, et al. Object detection meets knowledge graphs[C]. International Joint Conferences on Artificial Intelligence, 2017. paper.
  • Von Rueden L, Mayer S, Beckh K, et al. Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems[J]. arXiv preprint arXiv:1903.12394, 2019. paper. code
  • Kursuncu U, Gaur M, Sheth A. Knowledge infused learning (k-il): Towards deep incorporation of knowledge in deep learning[J]. arXiv preprint arXiv:1912.00512, 2019. paper.
  • Sheth A, Gaur M, Kursuncu U, et al. Shades of knowledge-infused learning for enhancing deep learning[J]. IEEE Internet Computing, 2019, 23(6): 54-63. paper.
  • Chen T, Lin L, Hui X, et al. Knowledge-guided multi-label few-shot learning for general image recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020. paper
  • Zareian A, Karaman S, Chang S F. Bridging knowledge graphs to generate scene graphs[C]//European conference on computer vision. Springer, Cham, 2020: 606-623. paper. code
  • Ge Y, Xiao Y, Xu Z, et al. A peek into the reasoning of neural networks: Interpreting with structural visual concepts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 2195-2204. paper.
  • Yu F, Tang J, Yin W, et al. Ernie-vil: Knowledge enhanced vision-language representations through scene graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(4): 3208-3216. paper.
  • Shevchenko V, Teney D, Dick A, et al. Reasoning over vision and language: Exploring the benefits of supplemental knowledge[J]. arXiv preprint arXiv:2101.06013, 2021. paper.
  • Yu F, Tang J, Yin W, et al. Ernie-vil: Knowledge enhanced vision-language representations through scene graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(4): 3208-3216. paper.
  • Sharifzadeh S, Baharlou S M, Tresp V. Classification by attention: Scene graph classification with prior knowledge[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(6): 5025-5033. paper
  • Dash, Tirtharaj, et al. "A review of some techniques for inclusion of domain-knowledge into deep neural networks." Scientific Reports 12.1 (2022): 1-15. paper.

KG-HOI

  • Li Y L, Zhou S, Huang X, et al. Transferable interactiveness knowledge for human-object interaction detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3585-3594. paper. code.
  • Xu B, Wong Y, Li J, et al. Learning to detect human-object interactions with knowledge[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. paper
  • Zhuo T, Cheng Z, Zhang P, et al. Explainable video action reasoning via prior knowledge and state transitions[C]//Proceedings of the 27th acm international conference on multimedia. 2019: 521-529. paper. code.
  • Kim D J, Sun X, Choi J, et al. Detecting human-object interactions with action co-occurrence priors[C]//European Conference on Computer Vision. Springer, Cham, 2020: 718-736. paper. code.
  • Kim D, Lee G, Jeong J, et al. Tell me what they're holding: Weakly-supervised object detection with transferable knowledge from human-object interaction[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020, 34(07): 11246-11253. paper.
  • Lin X, Zou Q, Xu X, et al. Effects of Motion-Relevant Knowledge From Unlabeled Video to Human-Object Interaction Detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. paper.
  • Hou Z, Yu B, Qiao Y, et al. Affordance transfer learning for human-object interaction detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 495-504. paper. code.
  • Morais R, Le V, Venkatesh S, et al. Learning asynchronous and sparse human-object interaction in videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 16041-16050. paper. code.
  • Chen J, Wu X, Hu Y, et al. Spatial-temporal causal inference for partial image-to-video adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2021, 35(2): 1027-1035. paper. code
  • Yang L, Li K, Zhan X, et al. OakInk: A Large-scale Knowledge Repository for Understanding Hand-Object Interaction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 20953-20962. paper. code
  • Liu R, Zheng G, Gupta S, et al. Knowledge infused decoding[J]. arXiv preprint arXiv:2204.03084, 2022. paper. code
  • Hua H, Li D, Li R, et al. Towards Explainable Action Recognition by Salient Qualitative Spatial Object Relation Chains[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(5): 5710-5718. paper.

MOE

  • Valada A, Dhall A, Burgard W. Convoluted mixture of deep experts for robust semantic segmentation[C]//IEEE/RSJ International conference on intelligent robots and systems (IROS) workshop, state estimation and terrain perception for all terrain mobile robots. 2016, 2. paper. code.
  • Fu H, Gong M, Wang C, et al. MoE-SPNet: A mixture-of-experts scene parsing network[J]. Pattern Recognition, 2018, 84:226-236. paper.
  • Wang X, Yu F, Dunlap L, et al. Deep mixture of experts via shallow embedding[C]//Uncertainty in artificial intelligence. PMLR, 2020: 552-562. paper.
  • Minaee S, Boykov Y Y, Porikli F, et al. Image segmentation using deep learning: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021. paper.
  • Riquelme C, Puigcerver J, Mustafa B, et al. Scaling vision with sparse mixture of experts[J]. Advances in Neural Information Processing Systems, 2021, 34: 8583-8595. paper. code.
  • Fedus W, Dean J, Zoph B. A review of sparse expert models in deep learning[J]. arXiv preprint arXiv:2209.01667, 2022. paper. code
  • Pavlitskaya S, Hubschneider C, Struppek L, et al. Balancing Expert Utilization in Mixture-of-Experts Layers Embedded in CNNs[J]. arXiv preprint arXiv:2204.10598, 2022. paper
  • Fingscheidt T, Gottschalk H, Houben S. Deep Neural Networks and Data for Automated Driving: Robustness, Uncertainty Quantification, and Insights Towards Safety[J]. 2022. paper
  • Ou Y, Yuan Y, Huang X, et al. Patcher: Patch Transformers with Mixture of Experts for Precise Medical Image Segmentation[J]. arXiv preprint arXiv:2206.01741 , 2022. paper. code.

Sponsors

...

Copyright && Maintainer

Copyright (C) 2022 ETVP

Corresponding: Liang Zhang <liangzhang@xidian.edu.cn>

Maintainers: Zhuo Liang