forked from insilico/plink
-
Notifications
You must be signed in to change notification settings - Fork 0
/
locus.cpp
281 lines (201 loc) · 5.92 KB
/
locus.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2006 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include "plink.h"
#include "options.h"
using namespace std;
vector<Z> Plink::calcLocusIBD(Individual * p1, Individual * p2, Z I)
{
// ** TODO ** -- development code -- lots of possible speedups here.
// 1) Remove I as an argument
// 2) Now no need to calculate all probabilities -- just do the three required for that
// particular locus
// Store calculated P(M|Z) here
vector<Z> ZL(nl);
// Locus counter
int l = 0;
//////////////////////////////
// All SNPs in the scan region
for (int l2=par::run_start; l2<=par::run_end; l2++)
{
/////////////////////
// Allele frequencies
double p = locus[l2]->freq;
double q = 1 - p;
// Na = # alleles = 2N where N is number of individuals
double Na = locus[l]->nm;
double x = p * Na;
double y = q * Na;
/////////////////////////////////////////////////
// Assign P(M|Z) based on genotype for each SNP
bool a1 = p1->one[l2];
bool a2 = p1->two[l2];
bool b1 = p2->one[l2];
bool b2 = p2->two[l2];
// Assign unit vector if either genotype is missing
if ( ( a1 && (!a2) ) ||
( b1 && (!b2) ) )
{
ZL[l].z0 = ZL[l].z1 = ZL[l].z2 = 1;
l++;
continue;
}
if ( a1 )
{
if ( a2 )
{
if ( b1 )
{
if ( b2 )
{
// aa, aa
ZL[l].z0 = q*q*q*q
* ( (y-1)/y * (y-2)/y * (y-3)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = q*q*q * ( (y-1)/y * (y-2)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = q*q * ( (y-1)/y * Na/(Na-1));
}
}
else
{
if ( b2 )
{
// aa, Aa
ZL[l].z0 = 2*p*q*q*q
* ( (y-1)/y * (y-2)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*q*q * ((y-1)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = 0;
}
else
{
// aa, AA
ZL[l].z0 = p*p*q*q
* ( (x-1)/x * (y-1)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = 0;
ZL[l].z2 = 0;
}
}
}
}
else
{
if ( a2 )
{
if ( b1 )
{
if ( b2 )
{
// Aa, aa
ZL[l].z0 = 2*p*q*q*q
* ( (y-1)/y * (y-2)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*q*q * ((y-1)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = 0;
}
}
else
{
if ( b2 )
{
// Aa, Aa
ZL[l].z0 = 4*p*p*q*q
* ( (x-1)/x * (y-1)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*p*q
* ( (x-1)/x * Na/(Na-1) * Na/(Na-2) )
+ p*q*q
* ((y-1)/y * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = 2*p*q * Na/(Na-1) ;
}
else
{
// Aa, AA
ZL[l].z0 = 2*p*p*p*q
* ( (x-1)/x * (x-2)/x * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*p*q
* ( (x-1)/x * Na/(Na-1) * Na/(Na-2) );
ZL[l].z2 = 0;
}
}
}
else
{
if ( b1 )
{
if ( b2 )
{
// AA, aa
ZL[l].z0 = p*p*q*q
* ( (x-1)/x * (y-1)/y * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = 0;
ZL[l].z2 = 0;
}
}
else
{
if ( b2 )
{
// AA, Aa
ZL[l].z0 = 2*p*p*p*q
* ( (x-1)/x * (x-2)/x * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)) );
ZL[l].z1 = p*p*q
* ( (x-1)/x * Na/(Na-1) * Na/(Na-2) );
ZL[l].z2 = 0;
}
else
{
// AA, AA
ZL[l].z0 = p*p*p*p
* ( (x-1)/x * (x-2)/x * (x-3)/x * (Na/(Na-1)) * (Na/(Na-2)) * (Na/(Na-3)));
ZL[l].z1 = p*p*p
* ( (x-1)/x * (x-2)/x * Na/(Na-1) * Na/(Na-2));
ZL[l].z2 = p*p
* ( (x-1)/x * Na/(Na-1));
}
}
}
}
/////////////////////////////////////
// Fudge factor for genotyping error
if ( ZL[l].z1 < 0.0001 )
{
ZL[l].z1 = 0.0001;
double S = ZL[l].z0 + ZL[l].z1 + ZL[l].z2;
ZL[l].z0 /= S;
ZL[l].z1 /= S;
ZL[l].z2 /= S;
}
/////////////////
// Next SNP
l++;
}
return ZL;
}
// ////////////////////////////////////////////
// // 2. Allow for possible genotyping error
// // sum_{all possible true genotypes} P(observed G|true G) P(true G |IBD)
// // double e = 0.005;
// // double f = 0.001;
// // double ER_AA_AA__AA_AA = 1- 2e - 2f - 2e*f - e*e - f*f;
// // double ER_AA_AB__AA_AA = e;
// // double ER_AA_BB__AA_AA = f;
// // double ER_AB_AA__AA_AA = e;
// // double ER_AB_AB__AA_AA = e*e;
// // double ER_AB_BB__AA_AA = e*f;
// // double ER_BB_AA__AA_AA = f;
// // double ER_BB_AB__AA_AA = e*f;
// // double ER_BB_BB__AA_AA = f*f;
// // double ER_AA_AA__AA_AB = e;
// // double ER_AA_AB__AA_AB = 1 - 3*e - 2*e*e - 2*e*f - f;
// // double ER_AA_BB__AA_AB = e;
// // double ER_AB_AA__AA_AB = e*e;
// // double ER_AB_AB__AA_AB = e;
// // double ER_AB_BB__AA_AB = e*e;
// // double ER_BB_AA__AA_AB = f*e;
// // double ER_BB_AB__AA_AB = f;
// // double ER_BB_BB__AA_AB = f*e;
// // Sum over all possible true genotypes P(Observed G | True G) P(True G |IBD = 1)