~’
wr

Git Good Practices

If you're reading this document, you're probably looking for some guidance on how to use Git
on your project. There are a lot of ways to use it, both good and bad. So, we want to help you
wade through the different methods and help answer the question: “How do we actually do it
here at Fearless"?

This document outlines the foundational ways we expect everyone at Fearless to use Git.
However, we recognize that not every project will be able to use Git in the way we're asking.
That's why these are “good practices” and not “best practices” — these are methods we've
tested that will produce good outcomes, but they aren’t strict standards. Use them when you
can and use your best judgment when you can't!

At the end of this doc, you'll also find a list of additional materials — resources, repos, tools,
and playgrounds — where you can learn more about Git and play around with it a bit. We
encourage you to poke around those links and let us know if anything should be added to the
list!

Our Git good practices

Pull requests

Pull requests should be reviewed in a timely manner. Once the branch is merged, it should
be deleted.

If changes are made to a pull request, the original reviews should be dismissed after it has
been reviewed.

Team members are highly encouraged to share WIP branches and create draft pull requests.
A draft pull request should not be marked as “Ready to Review” until indicated work has been
completed and the branch is ready for code review. Pull requests live in the repository forever.

A good pull request should include the following:

- One self-contained change

- ldeally, no more than 250 lines of change

- Self-explanatory title that describes what the pull request does

- Description that details what was changed, why it was changed, and how it was
changed

- Link to ticket

- Links to any related pull requests

8 Market Place, Suite 200, Baltimore, MD 21202
Fearless (410) 394-9600 / fax (410) 779-3706 / fearless.tech

~’
wr

gitignore

A project repository’s gitignore file should be project specific. It should not include IDE- and
OS-specific file information.

Every developer should have a global gitignore file for their system. Because IDE- and
OS-specific files are specific to the developer environment, they should be added to a global
gitignore.

Smaller commits

Developers should be very intentional about their commits and avoid “gitadd ** “gitadd .’
These commands have the possibility of bringing in unintended changes.

Each commit should represent a finite change. If many different changes are made at once, a
developer should leverage line-specific commits to maintain the integrity of the repository.
Commits done this way make it easier for other developers to see and review the changes in
context. They also create less potential for merge conflicts.

Formatting changes and logic changes should be separate commits for the purpose of
maintaining code. It's easier to identify a bug in a finite logic change than to have to parse a
large mixed-purpose commit.

Commit messages should be clear about the change and why it was made. A well-written
commit message helps with future maintainability of the code base.

Git force-with-lease

" Git push -- force " forcibly overwrites the remote commit history with your own local history
and should never be used without discussion with your team.

If a regular push command is not effective, the developer should first pull any commits from
the target branch that do not exist in the local branch with ~git fetch™ before using the force
command as it is normally reserved for extreme cases when something has gone wrong with
the repository.

If a force push is necessary, developers should use " git push —force-with-lease™, which will
only overwrite the remote branch if your local history is aware of all commmits on the remote
branch. Using " git push —force-with-lease™ safeguards the developer from destroying
someone else’s changes to the codebase.

8 Market Place, Suite 200, Baltimore, MD 21202
Fearless (410) 394-9600 / fax (410) 779-3706 / fearless.tech

https://github.com/github/gitignore
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#create-a-global-gitignore
https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/
https://www.git-tower.com/blog/force-push-in-git/

Af
W\

git push
Scenario git push --force-with-lease
New commits on local branch = works works
New commit on remote FAILS FAILS
branch added by another user
Commit from remote branch FAILS works

is modified on local branch

Debugging
Git can and should be used for debugging.

" Git blame " is useful for identifying and understanding a specific change; the commit
message should provide enough valuable information for another developer to pick up
where the original author left off. If the commit message is unclear, the developer can also
ask the author for clarification.

Branch structures

Preferred: Trunk Based Development

In Trunk Based Development, developers collaborate in a single branch called the trunk,
typically named “main”. Following the pull request workflow, short lived feature branches are
code reviewed and merged before integrating into the trunk.

Branches

1. Main
2. Feature-X

8 Market Place, Suite 200, Baltimore, MD 21202
Fearless (410) 394-9600 / fax (410) 779-3706 / fearlesstech

~’
wr

Process

Main is releasable anytime

Main is tagged to deploy to production

Devs must branch off Main branch

Pull requests for Feature-X branches are submitted and reviewed daily
Feature-X branches are merged into Main branch

Rationale

e Because Main is releasable anytime, the team has the agility to frequently deploy to
production
Requirement for continuous integration and continuous delivery
Ensures teams release code quickly and consistently
Code reviews are more efficient; small branches mean engineers can quickly see and
review changes

e Limits long-lived branches, reducing the likelihood of merge conflicts and cognitive
overload of large amounts of changes

Potential pitfalls

Specifically with GitHub, it's not possible to "protect" a tag. So anyone with maintainer access
is allowed to tag and could trigger a push to production. Though some Cl tools, such as
CircleCl, could have further levels of protection.

Feature flags are required to manage releases between production and non-production
environments.

Best suited for

e A mature engineering team
e Aloosely coupled code base that can support feature abstractions

Next best: Git Flow

Sometimes teams or clients need an intermediate step between where they are and where
they need to go in order to build the necessary comfort and positivity. In those cases, Git Flow
may be the right choice.

Branches

1. Main

8 Market Place, Suite 200, Baltimore, MD 21202
Fearless (410) 394-9600 / fax (410) 779-3706 / fearless.tech

~’
wr

2. Dev
3. Feature-X

Process

Main is releasable anytime

Main is tagged to deploy to production

Developers must branch off Dev branch

Dev is merged into Main on a “regular” basis

Dev is rebased on Main when hotfixes are committed

Rationale

A Dev branch creates a perception of safety for the developers who are concerned about
committing to main and possibly affecting deploys.

Tags on main are used for deployment to give more control over when deployments to
production occur.

Potential pitfalls

Merging Dev into Main consistently can be time consuming. One also must take care to
rebase Dev on Main when hot fixes are produced, and this can create ripple effects on feature
branches. Main and Dev branch split is redundant and impedes the establishment of
continuous integration and continuous delivery.

Best suited for

e |Less experienced engineering team

e Open source projects

e lLarge projects compiling releases

e Projects that have scheduled release cycles
Tips & Tricks
Git Bisect

In the scenario where a team does not know when a bug was introduced, they can leverage

git bisect™ to do a binary search of the repository to narrow down the issue to a specific
commit.

8 Market Place, Suite 200, Baltimore, MD 21202
Fearless (410) 394-9600 / fax (410) 779-3706 / fearless.tech

https://interrupt.memfault.com/blog/git-bisect#starting-with-git-bisect

~’
wr

Additional materials

Fearless repositories

e https:/aithub.com/FearlessSolutions
e https://github.com/orgs/FearlessFarms

Resources

e Gitdocumentation
o Git documentation straight from the source
Basic Git commands
Create a global gitignore
o Instructions for setting up a global gitignore file
Project gitignore templates
Write better commit messages
Writing a great pull request description
Benefits of making small pull requests
Merge vs Rebase
Trunk based development
Pre-commit hooks
Never "qgit push force”

Playgrounds

e |nteractive git branching demo
o Interactive git branching - no demo
e https://git-school.github.io/visualizing-git/

Tools
e Command line
e GitHub Desktop
e GitX
e Trufflehog

o Pre-commit hook to catch committed secrets

8 Market Place, Suite 200, Baltimore, MD 21202
Fearless (410) 394-9600 / fax (410) 779-3706 / fearless.tech

https://github.com/FearlessSolutions/
https://github.com/orgs/FearlessFarms
https://git-scm.com/doc
https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#create-a-global-gitignore
https://github.com/github/gitignore
https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/
https://www.pullrequest.com/blog/writing-a-great-pull-request-description/
https://google.github.io/eng-practices/review/developer/small-cls.html
https://medium.com/mindorks/understanding-git-merge-git-rebase-88e2afd42671
https://trunkbaseddevelopment.com/
https://pre-commit.com/
https://salferrarello.com/never-git-push-force/
https://learngitbranching.js.org/
https://learngitbranching.js.org/?NODEMO
https://git-school.github.io/visualizing-git/
https://git-scm.com/book/en/v2/Getting-Started-The-Command-Line
https://desktop.github.com/
https://gitx.frim.nl/
https://github.com/trufflesecurity/truffleHog

