
‭Git Good Practices‬
‭If you’re reading this document, you’re probably looking for some guidance on how to use Git‬
‭on your project. There are a lot of ways to use it, both good and bad. So, we want to help you‬
‭wade through the different methods and help answer the question: “How do we actually do it‬
‭here at Fearless”?‬

‭This document outlines the foundational ways we expect everyone at Fearless to use Git.‬
‭However, we recognize that not every project will be able to use Git in the way we’re asking.‬
‭That’s why these are “good practices” and not “best practices” — these are methods we’ve‬
‭tested that will produce good outcomes, but they aren’t strict standards. Use them when you‬
‭can and use your best judgment when you can’t!‬

‭At the end of this doc, you’ll also find a list of additional materials — resources, repos, tools,‬
‭and playgrounds — where you can learn more about Git and play around with it a bit. We‬
‭encourage you to poke around those links and let us know if anything should be added to the‬
‭list!‬

‭Our Git good practices‬

‭Pull requests‬

‭Pull requests should be reviewed in a timely manner. Once the branch is merged, it should‬
‭be deleted.‬

‭If changes are made to a pull request, the original reviews should be dismissed after it has‬
‭been reviewed.‬

‭Team members are highly encouraged to share WIP branches and create draft pull requests.‬
‭A draft pull request should not be marked as “Ready to Review” until indicated work has been‬
‭completed and the branch is ready for code review. Pull requests live in the repository forever.‬

‭A good pull request should include the following:‬

‭-‬ ‭One self-contained change‬
‭-‬ ‭Ideally, no more than 250 lines of change‬
‭-‬ ‭Self-explanatory title that describes what the pull request does‬
‭-‬ ‭Description that details what was changed, why it was changed, and how it was‬

‭changed‬
‭-‬ ‭Link to ticket‬
‭-‬ ‭Links to any related pull requests‬

‭8 Market Place, Suite 200, Baltimore, MD 21202‬
‭(410) 394-9600 / fax (410) 779-3706 /‬ ‭fearless.tech‬

‭gitignore‬

‭A‬‭project repository‬‭’s gitignore file should be project‬‭specific. It‬‭should not‬‭include IDE- and‬
‭OS-specific file information.‬

‭Every developer should have a‬‭global gitignore‬‭file‬‭for their system. Because IDE- and‬
‭OS-specific files are specific to the developer environment, they‬‭should‬‭be added to a global‬
‭gitignore.‬

‭Smaller commits‬

‭Developers should be very intentional about their commits and avoid `git add *` `git add .`‬
‭These commands have the possibility of bringing in unintended changes.‬

‭Each commit should represent a finite change. If many different changes are made at once, a‬
‭developer should leverage line-specific commits to maintain the integrity of the repository.‬
‭Commits done this way make it easier for other developers to see and review the changes in‬
‭context. They also create less potential for merge conflicts.‬

‭Formatting changes and logic changes should be separate commits for the purpose of‬
‭maintaining code. It’s easier to identify a bug in a finite logic change than to have to parse a‬
‭large mixed-purpose commit.‬

‭Commit messages should be clear‬‭about the change and‬‭why it was made. A well-written‬
‭commit message helps with future maintainability of the code base.‬

‭Git force-with-lease‬

‭̀ Git push -- force`forcibly overwrites the remote commit history with your own local history‬
‭and‬‭should never be used without discussion with your‬‭team.‬

‭If a regular push command is not effective, the developer should first pull any commits from‬
‭the target branch that do not exist in the local branch with‬‭̀ git fetch`‬‭before using the force‬
‭command as it is normally reserved for extreme cases when‬‭something has gone wrong‬‭with‬
‭the repository.‬

‭If a force push is necessary, developers should use‬‭̀ git push –force-with-lease`‬‭, which will‬
‭only overwrite the remote branch if your local history is aware of all commits on the remote‬
‭branch. Using‬‭̀ git push –force-with-lease`‬‭safeguards‬‭the developer from destroying‬
‭someone else’s changes to the codebase.‬

‭8 Market Place, Suite 200, Baltimore, MD 21202‬
‭(410) 394-9600 / fax (410) 779-3706 /‬ ‭fearless.tech‬

https://github.com/github/gitignore
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#create-a-global-gitignore
https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/
https://www.git-tower.com/blog/force-push-in-git/

‭Scenario‬ ‭git push‬
‭git push‬
‭--force-with-lease‬

‭New commits on local branch‬ ‭works‬ ‭works‬

‭New commit on remote‬
‭branch added by another user‬

‭FAILS‬ ‭FAILS‬

‭Commit from remote branch‬
‭is modified on local branch‬

‭FAILS‬ ‭works‬

‭Debugging‬

‭Git can and should be used for debugging.‬

‭̀ Git blame`is useful for identifying and understanding a specific change; the commit‬
‭message should provide enough valuable information for another developer to pick up‬
‭where the original author left off. If the commit message is unclear, the developer can also‬
‭ask the author for clarification.‬

‭Branch structures‬

‭Preferred: Trunk Based Development‬

‭In Trunk Based Development, developers collaborate in a single branch called the trunk,‬
‭typically named “main”. Following the pull request workflow, short lived feature branches are‬
‭code reviewed and merged before integrating into the trunk.‬

‭Branches‬

‭1.‬ ‭Main‬
‭2.‬ ‭Feature-X‬

‭8 Market Place, Suite 200, Baltimore, MD 21202‬
‭(410) 394-9600 / fax (410) 779-3706 /‬ ‭fearless.tech‬

‭Process‬

‭●‬ ‭Main is releasable anytime‬
‭●‬ ‭Main is tagged to deploy to production‬
‭●‬ ‭Devs must branch off Main branch‬
‭●‬ ‭Pull requests for Feature-X branches are submitted and reviewed daily‬
‭●‬ ‭Feature-X branches are merged into Main branch‬

‭Rationale‬

‭●‬ ‭Because Main is releasable anytime, the team has the agility to frequently deploy to‬
‭production‬

‭●‬ ‭Requirement for continuous integration and continuous delivery‬
‭●‬ ‭Ensures teams release code quickly and consistently‬
‭●‬ ‭Code reviews are more efficient; small branches mean engineers can quickly see and‬

‭review changes‬
‭●‬ ‭Limits long-lived branches, reducing the likelihood of merge conflicts and cognitive‬

‭overload of large amounts of changes‬

‭Potential pitfalls‬

‭Specifically with GitHub, it's not possible to "protect" a tag. So anyone with maintainer access‬
‭is allowed to tag and could trigger a push to production. Though some CI tools, such as‬
‭CircleCI, could have further levels of protection.‬

‭Feature flags are required to manage releases between production and non-production‬
‭environments.‬

‭Best suited for‬

‭●‬ ‭A mature engineering team‬
‭●‬ ‭A loosely coupled code base that can support feature abstractions‬

‭Next best: Git Flow‬

‭Sometimes teams or clients need an intermediate step between where they are and where‬
‭they need to go in order to build the necessary comfort and positivity. In those cases, Git Flow‬
‭may be the right choice.‬

‭Branches‬

‭1.‬ ‭Main‬

‭8 Market Place, Suite 200, Baltimore, MD 21202‬
‭(410) 394-9600 / fax (410) 779-3706 /‬ ‭fearless.tech‬

‭2.‬ ‭Dev‬
‭3.‬ ‭Feature-X‬

‭Process‬

‭●‬ ‭Main is releasable anytime‬
‭●‬ ‭Main is tagged to deploy to production‬
‭●‬ ‭Developers must branch off Dev branch‬
‭●‬ ‭Dev is merged into Main on a “regular” basis‬
‭●‬ ‭Dev is rebased on Main when hotfixes are committed‬

‭Rationale‬

‭A Dev branch creates a perception of safety for the developers who are concerned about‬
‭committing to main and possibly affecting deploys.‬

‭Tags on main are used for deployment to give more control over when deployments to‬
‭production occur.‬

‭Potential pitfalls‬

‭Merging Dev into Main consistently can be time consuming. One also must take care to‬
‭rebase Dev on Main when hot fixes are produced, and this can create ripple effects on feature‬
‭branches. Main and Dev branch split is redundant and impedes the establishment of‬
‭continuous integration and continuous delivery.‬

‭Best suited for‬

‭●‬ ‭Less experienced engineering team‬
‭●‬ ‭Open source projects‬
‭●‬ ‭Large projects compiling releases‬
‭●‬ ‭Projects that have scheduled release cycles‬

‭Tips & Tricks‬

‭Git Bisect‬

‭In the scenario where a team does not know when a bug was introduced, they can leverage‬
‭̀ ‬‭git bisect‬‭̀ to do a binary search of the repository‬‭to narrow down the issue to a specific‬
‭commit.‬

‭8 Market Place, Suite 200, Baltimore, MD 21202‬
‭(410) 394-9600 / fax (410) 779-3706 /‬ ‭fearless.tech‬

https://interrupt.memfault.com/blog/git-bisect#starting-with-git-bisect

‭Additional materials‬

‭Fearless repositories‬

‭●‬ ‭https://github.com/FearlessSolutions‬
‭●‬ ‭https://github.com/orgs/FearlessFarms‬

‭Resources‬

‭●‬ ‭Git‬‭documentation‬
‭○‬ ‭Git documentation straight from the source‬

‭●‬ ‭Basic Git commands‬
‭●‬ ‭Create a global gitignore‬

‭○‬ ‭Instructions for setting up a global gitignore file‬
‭●‬ ‭Project gitignore templates‬
‭●‬ ‭Write better commit messages‬
‭●‬ ‭Writing a great pull request description‬
‭●‬ ‭Benefits of making small pull requests‬
‭●‬ ‭Merge vs Rebase‬
‭●‬ ‭Trunk based development‬
‭●‬ ‭Pre-commit hooks‬
‭●‬ ‭Never `git push force`‬

‭Playgrounds‬

‭●‬ ‭Interactive‬‭git branching demo‬
‭○‬ ‭Interactive git branching - no demo‬

‭●‬ ‭https://git-school.github.io/visualizing-git/‬

‭Tools‬

‭●‬ ‭Command line‬
‭●‬ ‭GitHub Desktop‬
‭●‬ ‭GitX‬
‭●‬ ‭Trufflehog‬

‭○‬ ‭Pre-commit hook to catch committed secrets‬

‭8 Market Place, Suite 200, Baltimore, MD 21202‬
‭(410) 394-9600 / fax (410) 779-3706 /‬ ‭fearless.tech‬

https://github.com/FearlessSolutions/
https://github.com/orgs/FearlessFarms
https://git-scm.com/doc
https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html
https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files#create-a-global-gitignore
https://github.com/github/gitignore
https://www.freecodecamp.org/news/how-to-write-better-git-commit-messages/
https://www.pullrequest.com/blog/writing-a-great-pull-request-description/
https://google.github.io/eng-practices/review/developer/small-cls.html
https://medium.com/mindorks/understanding-git-merge-git-rebase-88e2afd42671
https://trunkbaseddevelopment.com/
https://pre-commit.com/
https://salferrarello.com/never-git-push-force/
https://learngitbranching.js.org/
https://learngitbranching.js.org/?NODEMO
https://git-school.github.io/visualizing-git/
https://git-scm.com/book/en/v2/Getting-Started-The-Command-Line
https://desktop.github.com/
https://gitx.frim.nl/
https://github.com/trufflesecurity/truffleHog

