-
Notifications
You must be signed in to change notification settings - Fork 23
/
nodes.py
1292 lines (1109 loc) · 72.6 KB
/
nodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
from copy import deepcopy
from torch.nn import Upsample
import comfy.model_management as model_management
from comfy.model_patcher import set_model_options_patch_replace
from comfy.ldm.modules.attention import attention_basic, attention_xformers, attention_pytorch, attention_split, attention_sub_quad, optimized_attention_for_device
from .experimental_temperature import temperature_patcher
import comfy.samplers
import comfy.utils
import numpy as np
import torch
import torch.nn.functional as F
from colorama import Fore, Style
import json
import os
import random
import base64
original_sampling_function = None
current_dir = os.path.dirname(os.path.realpath(__file__))
json_preset_path = os.path.join(current_dir, 'presets')
attnfunc = optimized_attention_for_device(model_management.get_torch_device())
check_string = "UEFUUkVPTi50eHQ="
support_string = b'CgoKClRoYW5rIHlvdSBmb3IgdXNpbmcgbXkgbm9kZXMhCgpJZiB5b3UgZW5qb3kgaXQsIHBsZWFzZSBjb25zaWRlciBzdXBwb3J0aW5nIG1lIG9uIFBhdHJlb24gdG8ga2VlcCB0aGUgbWFnaWMgZ29pbmchCgpWaXNpdDoKCmh0dHBzOi8vd3d3LnBhdHJlb24uY29tL2V4dHJhbHRvZGV1cwoKCgo='
def support_function():
if base64.b64decode(check_string).decode('utf8') not in os.listdir(current_dir):
print(base64.b64decode(check_string).decode('utf8'))
print(base64.b64decode(support_string).decode('utf8'))
def sampling_function_patched(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None, **kwargs):
cond_copy = cond
uncond_copy = uncond
for fn in model_options.get("sampler_patch_model_pre_cfg_function", []):
args = {"model": model, "sigma": timestep, "model_options": model_options}
model, model_options = fn(args)
if "sampler_pre_cfg_automatic_cfg_function" in model_options:
uncond, cond, cond_scale = model_options["sampler_pre_cfg_automatic_cfg_function"](
sigma=timestep, uncond=uncond, cond=cond, cond_scale=cond_scale
)
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
else:
uncond_ = uncond
conds = [cond, uncond_]
out = comfy.samplers.calc_cond_batch(model, conds, x, timestep, model_options)
for fn in model_options.get("sampler_pre_cfg_function", []):
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
out = fn(args)
cond_pred = out[0]
uncond_pred = out[1]
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options, "cond_pos": cond_copy, "cond_neg": uncond_copy}
cfg_result = x - model_options["sampler_cfg_function"](args)
else:
cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale
for fn in model_options.get("sampler_post_cfg_function", []):
args = {"denoised": cfg_result, "cond": cond_copy, "uncond": uncond_copy, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred,
"sigma": timestep, "model_options": model_options, "input": x}
cfg_result = fn(args)
return cfg_result
def monkey_patching_comfy_sampling_function():
global original_sampling_function
if original_sampling_function is None:
original_sampling_function = comfy.samplers.sampling_function
# Make sure to only patch once
if hasattr(comfy.samplers.sampling_function, '_automatic_cfg_decorated'):
return
comfy.samplers.sampling_function = sampling_function_patched
comfy.samplers.sampling_function._automatic_cfg_decorated = True # flag to check monkey patch
def make_sampler_pre_cfg_automatic_cfg_function(minimum_sigma_to_disable_uncond=0, maximum_sigma_to_enable_uncond=1000000, disabled_cond_start=10000,disabled_cond_end=10000):
def sampler_pre_cfg_automatic_cfg_function(sigma, uncond, cond, cond_scale, **kwargs):
if sigma[0] < minimum_sigma_to_disable_uncond or sigma[0] > maximum_sigma_to_enable_uncond:
uncond = None
if sigma[0] <= disabled_cond_start and sigma[0] > disabled_cond_end:
cond = None
return uncond, cond, cond_scale
return sampler_pre_cfg_automatic_cfg_function
def get_entropy(tensor):
hist = np.histogram(tensor.cpu(), bins=100)[0]
hist = hist / hist.sum()
hist = hist[hist > 0]
return -np.sum(hist * np.log2(hist))
def map_sigma(sigma, sigmax, sigmin):
return 1 + ((sigma - sigmax) * (0 - 1)) / (sigmin - sigmax)
def center_latent_mean_values(latent, per_channel, mult):
for b in range(len(latent)):
if per_channel:
for c in range(len(latent[b])):
latent[b][c] -= latent[b][c].mean() * mult
else:
latent[b] -= latent[b].mean() * mult
return latent
def get_denoised_ranges(latent, measure="hard", top_k=0.25):
chans = []
for x in range(len(latent)):
max_values = torch.topk(latent[x] - latent[x].mean() if measure == "range" else latent[x], k=int(len(latent[x])*top_k), largest=True).values
min_values = torch.topk(latent[x] - latent[x].mean() if measure == "range" else latent[x], k=int(len(latent[x])*top_k), largest=False).values
max_val = torch.mean(max_values).item()
min_val = abs(torch.mean(min_values).item()) if measure == "soft" else torch.mean(torch.abs(min_values)).item()
denoised_range = (max_val + min_val) / 2
chans.append(denoised_range**2 if measure == "hard_squared" else denoised_range)
return chans
def get_sigmin_sigmax(model):
model_sampling = model.model.model_sampling
sigmin = model_sampling.sigma(model_sampling.timestep(model_sampling.sigma_min))
sigmax = model_sampling.sigma(model_sampling.timestep(model_sampling.sigma_max))
return sigmin, sigmax
def gaussian_similarity(x, y, sigma=1.0):
diff = (x - y) ** 2
return torch.exp(-diff / (2 * sigma ** 2))
def check_skip(sigma, high_sigma_threshold, low_sigma_threshold):
return sigma > high_sigma_threshold or sigma < low_sigma_threshold
def max_abs(tensors):
shape = tensors.shape
tensors = tensors.reshape(shape[0], -1)
tensors_abs = torch.abs(tensors)
max_abs_idx = torch.argmax(tensors_abs, dim=0)
result = tensors[max_abs_idx, torch.arange(tensors.shape[1])]
return result.reshape(shape[1:])
def gaussian_kernel(size: int, sigma: float):
x = torch.arange(size) - size // 2
gauss = torch.exp(-x**2 / (2 * sigma**2))
kernel = gauss / gauss.sum()
return kernel.view(1, size) * kernel.view(size, 1)
def blur_tensor(tensor, kernel_size = 9, sigma = 2.0):
tensor = tensor.unsqueeze(0)
C = tensor.size(1)
kernel = gaussian_kernel(kernel_size, sigma)
kernel = kernel.expand(C, 1, kernel_size, kernel_size).to(tensor.device).to(dtype=tensor.dtype, device=tensor.device)
padding = kernel_size // 2
tensor = F.pad(tensor, (padding, padding, padding, padding), mode='reflect')
blurred_tensor = F.conv2d(tensor, kernel, groups=C)
return blurred_tensor.squeeze(0)
def smallest_distances(tensors):
if all(torch.equal(tensors[0], tensor) for tensor in tensors[1:]):
return tensors[0]
set_device = tensors.device
min_val = torch.full(tensors[0].shape, float("inf")).to(set_device)
result = torch.zeros_like(tensors[0])
for idx1, t1 in enumerate(tensors):
temp_diffs = torch.zeros_like(tensors[0])
for idx2, t2 in enumerate(tensors):
if idx1 != idx2:
temp_diffs += torch.abs(torch.sub(t1, t2))
min_val = torch.minimum(min_val, temp_diffs)
mask = torch.eq(min_val,temp_diffs)
result[mask] = t1[mask]
return result
def rescale(tensor, multiplier=2):
batch, seq_length, features = tensor.shape
H = W = int(seq_length**0.5)
tensor_reshaped = tensor.view(batch, features, H, W)
new_H = new_W = int(H * multiplier)
resized_tensor = F.interpolate(tensor_reshaped, size=(new_H, new_W), mode='bilinear', align_corners=False)
return resized_tensor.view(batch, new_H * new_W, features)
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475
def slerp(high, low, val):
dims = low.shape
#flatten to batches
low = low.reshape(dims[0], -1)
high = high.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
# in case we divide by zero
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
normalize_tensor = lambda x: x / x.norm()
def random_swap(tensors, proportion=1):
num_tensors = tensors.shape[0]
if num_tensors < 2: return tensors[0],0
tensor_size = tensors[0].numel()
if tensor_size < 100: return tensors[0],0
true_count = int(tensor_size * proportion)
mask = torch.cat((torch.ones(true_count, dtype=torch.bool, device=tensors[0].device),
torch.zeros(tensor_size - true_count, dtype=torch.bool, device=tensors[0].device)))
mask = mask[torch.randperm(tensor_size)].reshape(tensors[0].shape)
if num_tensors == 2 and proportion < 1:
index_tensor = torch.ones_like(tensors[0], dtype=torch.int64, device=tensors[0].device)
else:
index_tensor = torch.randint(1 if proportion < 1 else 0, num_tensors, tensors[0].shape, device=tensors[0].device)
for i, t in enumerate(tensors):
if i == 0: continue
merge_mask = index_tensor == i & mask
tensors[0][merge_mask] = t[merge_mask]
return tensors[0]
def multi_tensor_check_mix(tensors):
if tensors[0].numel() < 2 or len(tensors) < 2:
return tensors[0]
ref_tensor_shape = tensors[0].shape
sequence_tensor = torch.arange(tensors[0].numel(), device=tensors[0].device) % len(tensors)
reshaped_sequence = sequence_tensor.view(ref_tensor_shape)
for i in range(len(tensors)):
if i == 0: continue
mask = reshaped_sequence == i
tensors[0][mask] = tensors[i][mask]
return tensors[0]
def sspow(input_tensor, p=2):
return input_tensor.abs().pow(p) * input_tensor.sign()
def sspown(input_tensor, p=2):
abs_t = input_tensor.abs()
abs_t = (abs_t - abs_t.min()) / (abs_t.max() - abs_t.min())
return abs_t.pow(p) * input_tensor.sign()
def gradient_merge(tensor1, tensor2, start_value=0, dim=0):
if torch.numel(tensor1) <= 1: return tensor1
if dim >= tensor1.dim(): dim = 0
size = tensor1.size(dim)
alpha = torch.linspace(start_value, 1-start_value, steps=size, device=tensor1.device).view([-1 if i == dim else 1 for i in range(tensor1.dim())])
return tensor1 * alpha + tensor2 * (1 - alpha)
def save_tensor(input_tensor,name):
if "rndnum" in name:
rndnum = str(random.randint(100000,999999))
name = name.replace("rndnum", rndnum)
output_directory = os.path.join(current_dir, 'saved_tensors')
os.makedirs(output_directory, exist_ok=True)
output_file_path = os.path.join(output_directory, f"{name}.pt")
torch.save(input_tensor, output_file_path)
return input_tensor
def print_and_return(input_tensor, *args):
for what_to_print in args:
print(" ",what_to_print)
return input_tensor
# Experimental testings
def normal_attention(q, k, v, mask=None):
attention_scores = torch.matmul(q, k.transpose(-2, -1))
d_k = k.size(-1)
attention_scores = attention_scores / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
if mask is not None:
attention_scores = attention_scores.masked_fill(mask == 0, float('-inf'))
attention_weights = F.softmax(attention_scores, dim=-1)
output = torch.matmul(attention_weights, v)
return output
def split_heads(x, n_heads):
batch_size, seq_length, hidden_dim = x.size()
head_dim = hidden_dim // n_heads
x = x.view(batch_size, seq_length, n_heads, head_dim)
return x.permute(0, 2, 1, 3)
def combine_heads(x, n_heads):
batch_size, n_heads, seq_length, head_dim = x.size()
hidden_dim = n_heads * head_dim
x = x.permute(0, 2, 1, 3).contiguous()
return x.view(batch_size, seq_length, hidden_dim)
def sparsemax(logits):
logits_sorted, _ = torch.sort(logits, descending=True, dim=-1)
cumulative_sum = torch.cumsum(logits_sorted, dim=-1) - 1
rho = (logits_sorted > cumulative_sum / (torch.arange(logits.size(-1)) + 1).to(logits.device)).float()
tau = (cumulative_sum / rho.sum(dim=-1, keepdim=True)).gather(dim=-1, index=rho.sum(dim=-1, keepdim=True).long() - 1)
return torch.max(torch.zeros_like(logits), logits - tau)
def attnfunc_custom(q, k, v, n_heads, eval_string = ""):
q = split_heads(q, n_heads)
k = split_heads(k, n_heads)
v = split_heads(v, n_heads)
d_k = q.size(-1)
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if eval_string == "":
attn_weights = F.softmax(scores, dim=-1)
else:
attn_weights = eval(eval_string)
output = torch.matmul(attn_weights, v)
output = combine_heads(output, n_heads)
return output
def min_max_norm(t):
return (t - t.min()) / (t.max() - t.min())
class attention_modifier():
def __init__(self, self_attn_mod_eval, conds = None):
self.self_attn_mod_eval = self_attn_mod_eval
self.conds = conds
def modified_attention(self, q, k, v, extra_options, mask=None):
"""extra_options contains: {'cond_or_uncond': [1, 0], 'sigmas': tensor([14.6146], device='cuda:0'),
'original_shape': [2, 4, 128, 128], 'transformer_index': 4, 'block': ('middle', 0),
'block_index': 3, 'n_heads': 20, 'dim_head': 64, 'attn_precision': None}"""
if "attnbc" in self.self_attn_mod_eval:
attnbc = attention_basic(q, k, v, extra_options['n_heads'], mask)
if "normattn" in self.self_attn_mod_eval:
normattn = normal_attention(q, k, v, mask)
if "attnxf" in self.self_attn_mod_eval:
attnxf = attention_xformers(q, k, v, extra_options['n_heads'], mask)
if "attnpy" in self.self_attn_mod_eval:
attnpy = attention_pytorch(q, k, v, extra_options['n_heads'], mask)
if "attnsp" in self.self_attn_mod_eval:
attnsp = attention_split(q, k, v, extra_options['n_heads'], mask)
if "attnsq" in self.self_attn_mod_eval:
attnsq = attention_sub_quad(q, k, v, extra_options['n_heads'], mask)
if "attnopt" in self.self_attn_mod_eval:
attnopt = attnfunc(q, k, v, extra_options['n_heads'], mask)
n_heads = extra_options['n_heads']
if self.conds is not None:
cond_pos_l = self.conds[0][..., :768].cuda()
cond_neg_l = self.conds[1][..., :768].cuda()
if self.conds[0].shape[-1] > 768:
cond_pos_g = self.conds[0][..., 768:2048].cuda()
cond_neg_g = self.conds[1][..., 768:2048].cuda()
return eval(self.self_attn_mod_eval)
def experimental_functions(cond_input, method, exp_value, exp_normalize, pcp, psi, sigma, sigmax, attention_modifiers_input, args, model_options_copy, eval_string = ""):
"""
There may or may not be an actual reasoning behind each of these methods.
Some like the sine value have interesting properties. Enabled for both cond and uncond preds it somehow make them stronger.
Note that there is a "normalize" toggle and it may change greatly the end result since some operation will totaly butcher the values.
"theDaRkNeSs" for example without normalizing seems to darken if used for cond/uncond (not with the cond as the uncond or something).
Maybe just with the positive. I don't remember. I leave it for now if you want to play around.
The eval_string can be used to create the uncond replacement.
I made it so it's split by semicolons and only the last split is the value in used.
What is before is added in an array named "v".
pcp is previous cond_pred
psi is previous sigma
args is the CFG function input arguments with the added cond/unconds (like the actual activation conditionings) named respectively "cond_pos" and "cond_neg"
So if you write:
pcp if sigma < 7 else -pcp;
print("it works too just don't use the output I guess");
v[0] if sigma < 14 else torch.zeros_like(cond);
v[-1]*2
Well the first line becomes v[0], second v[1] etc.
The last one becomes the result.
Note that it's just an example, I don't see much interest in that one.
Using comfy.samplers.calc_cond_batch(args["model"], [args["cond_pos"], None], args["input"], args["timestep"], args["model_options"])[0]
can work too.
This whole mess has for initial goal to attempt to find the best way (or have some bruteforcing fun) to replace the uncond pred for as much as possible.
Or simply to try things around :)
"""
if method == "cond_pred":
return cond_input
default_device = cond_input.device
# print()
# print(get_entropy(cond))
cond = cond_input.clone()
cond_norm = cond.norm()
if method == "amplify":
mask = torch.abs(cond) >= 1
cond_copy = cond.clone()
cond = torch.pow(torch.abs(cond), ( 1 / exp_value)) * cond.sign()
cond[mask] = torch.pow(torch.abs(cond_copy[mask]), exp_value) * cond[mask].sign()
elif method == "root":
cond = torch.pow(torch.abs(cond), ( 1 / exp_value)) * cond.sign()
elif method == "power":
cond = torch.pow(torch.abs(cond), exp_value) * cond.sign()
elif method == "erf":
cond = torch.erf(cond)
elif method == "exp_erf":
cond = torch.pow(torch.erf(cond), exp_value)
elif method == "root_erf":
cond = torch.erf(cond)
cond = torch.pow(torch.abs(cond), 1 / exp_value ) * cond.sign()
elif method == "erf_amplify":
cond = torch.erf(cond)
mask = torch.abs(cond) >= 1
cond_copy = cond.clone()
cond = torch.pow(torch.abs(cond), 1 / exp_value ) * cond.sign()
cond[mask] = torch.pow(torch.abs(cond_copy[mask]), exp_value) * cond[mask].sign()
elif method == "sine":
cond = torch.sin(torch.abs(cond)) * cond.sign()
elif method == "sine_exp":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), exp_value) * cond.sign()
elif method == "sine_exp_diff":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond_input), exp_value) * cond.sign() - cond
elif method == "sine_exp_diff_to_sine":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), exp_value) * cond.sign() - cond
elif method == "sine_root":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), ( 1 / exp_value)) * cond.sign()
elif method == "sine_root_diff":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond_input), 1 / exp_value) * cond.sign() - cond
elif method == "sine_root_diff_to_sine":
cond = torch.sin(torch.abs(cond)) * cond.sign()
cond = torch.pow(torch.abs(cond), 1 / exp_value) * cond.sign() - cond
elif method == "theDaRkNeSs":
cond = torch.sin(cond)
cond = torch.pow(torch.abs(cond), 1 / exp_value) * cond.sign() - cond
elif method == "cosine":
cond = torch.cos(torch.abs(cond)) * cond.sign()
elif method == "sign":
cond = cond.sign()
elif method == "zero":
cond = torch.zeros_like(cond)
elif method in ["attention_modifiers_input_using_cond","attention_modifiers_input_using_uncond","subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"]:
cond_to_use = args["cond_pos"] if method in ["attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_cond"] else args["cond_neg"]
tmp_model_options = deepcopy(model_options_copy)
for atm in attention_modifiers_input:
if sigma <= atm['sigma_start'] and sigma > atm['sigma_end']:
block_layers = {"input": atm['unet_block_id_input'], "middle": atm['unet_block_id_middle'], "output": atm['unet_block_id_output']}
for unet_block in block_layers:
for unet_block_id in block_layers[unet_block].split(","):
if unet_block_id != "":
unet_block_id = int(unet_block_id)
tmp_model_options = set_model_options_patch_replace(tmp_model_options, attention_modifier(atm['self_attn_mod_eval'], [args["cond_pos"][0]["cross_attn"], args["cond_neg"][0]["cross_attn"]]if "cond" in atm['self_attn_mod_eval'] else None).modified_attention, atm['unet_attn'], unet_block, unet_block_id)
cond = comfy.samplers.calc_cond_batch(args["model"], [cond_to_use], args["input"], args["timestep"], tmp_model_options)[0]
if method in ["subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"]:
cond = cond_input + (cond_input - cond) * exp_value
elif method == "previous_average":
if sigma > (sigmax - 1):
cond = torch.zeros_like(cond)
else:
cond = (pcp / psi * sigma + cond) / 2
elif method == "eval":
if "condmix" in eval_string:
def condmix(args, mult=2):
cond_pos_tmp = deepcopy(args["cond_pos"])
cond_pos_tmp[0]["cross_attn"] += (args["cond_pos"][0]["cross_attn"] - args["cond_neg"][0]["cross_attn"]*-1) * mult
return cond_pos_tmp
v = []
evals_strings = eval_string.split(";")
if len(evals_strings) > 1:
for i in range(len(evals_strings[:-1])):
v.append(eval(evals_strings[i]))
cond = eval(evals_strings[-1])
if exp_normalize and torch.all(cond != 0):
cond = cond * cond_norm / cond.norm()
# print(get_entropy(cond))
return cond.to(device=default_device)
class advancedDynamicCFG:
def __init__(self):
self.last_cfg_ht_one = 8
self.previous_cond_pred = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"automatic_cfg" : (["None", "soft", "hard", "hard_squared", "range"], {"default": "hard"},),
"skip_uncond" : ("BOOLEAN", {"default": True}),
"fake_uncond_start" : ("BOOLEAN", {"default": False}),
"uncond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"lerp_uncond" : ("BOOLEAN", {"default": False}),
"lerp_uncond_strength": ("FLOAT", {"default": 2, "min": 0.0, "max": 10.0, "step": 0.1, "round": 0.1}),
"lerp_uncond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"lerp_uncond_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"subtract_latent_mean" : ("BOOLEAN", {"default": False}),
"subtract_latent_mean_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"subtract_latent_mean_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"latent_intensity_rescale" : ("BOOLEAN", {"default": False}),
"latent_intensity_rescale_method" : (["soft","hard","range"], {"default": "hard"},),
"latent_intensity_rescale_cfg": ("FLOAT", {"default": 8, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"latent_intensity_rescale_sigma_end": ("FLOAT", {"default": 3, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"cond_exp": ("BOOLEAN", {"default": False}),
"cond_exp_normalize": ("BOOLEAN", {"default": False}),
"cond_exp_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"cond_exp_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"cond_exp_method": (["amplify", "root", "power", "erf", "erf_amplify", "exp_erf", "root_erf", "sine", "sine_exp", "sine_exp_diff", "sine_exp_diff_to_sine", "sine_root", "sine_root_diff", "sine_root_diff_to_sine", "theDaRkNeSs", "cosine", "sign", "zero", "previous_average", "eval",
"attention_modifiers_input_using_cond","attention_modifiers_input_using_uncond",
"subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"],),
"cond_exp_value": ("FLOAT", {"default": 2, "min": 0, "max": 100, "step": 0.1, "round": 0.01}),
"uncond_exp": ("BOOLEAN", {"default": False}),
"uncond_exp_normalize": ("BOOLEAN", {"default": False}),
"uncond_exp_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_exp_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_exp_method": (["amplify", "root", "power", "erf", "erf_amplify", "exp_erf", "root_erf", "sine", "sine_exp", "sine_exp_diff", "sine_exp_diff_to_sine", "sine_root", "sine_root_diff", "sine_root_diff_to_sine", "theDaRkNeSs", "cosine", "sign", "zero", "previous_average", "eval",
"subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond"],),
"uncond_exp_value": ("FLOAT", {"default": 2, "min": 0, "max": 100, "step": 0.1, "round": 0.01}),
"fake_uncond_exp": ("BOOLEAN", {"default": False}),
"fake_uncond_exp_normalize": ("BOOLEAN", {"default": False}),
"fake_uncond_exp_method" : (["cond_pred", "previous_average",
"amplify", "root", "power", "erf", "erf_amplify", "exp_erf", "root_erf", "sine", "sine_exp", "sine_exp_diff", "sine_exp_diff_to_sine", "sine_root", "sine_root_diff",
"sine_root_diff_to_sine", "theDaRkNeSs", "cosine", "sign", "zero", "eval",
"subtract_attention_modifiers_input_using_cond","subtract_attention_modifiers_input_using_uncond",
"attention_modifiers_input_using_cond","attention_modifiers_input_using_uncond"],),
"fake_uncond_exp_value": ("FLOAT", {"default": 2, "min": 0, "max": 1000, "step": 0.1, "round": 0.01}),
"fake_uncond_multiplier": ("INT", {"default": 1, "min": -1, "max": 1, "step": 1}),
"fake_uncond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"fake_uncond_sigma_end": ("FLOAT", {"default": 1, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"auto_cfg_topk": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 0.5, "step": 0.05, "round": 0.01}),
"auto_cfg_ref": ("FLOAT", {"default": 8, "min": 0.0, "max": 100, "step": 0.5, "round": 0.01}),
"attention_modifiers_global_enabled": ("BOOLEAN", {"default": False}),
"disable_cond": ("BOOLEAN", {"default": False}),
"disable_cond_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"disable_cond_sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"save_as_preset": ("BOOLEAN", {"default": False}),
"preset_name": ("STRING", {"multiline": False}),
},
"optional":{
"eval_string_cond": ("STRING", {"multiline": True}),
"eval_string_uncond": ("STRING", {"multiline": True}),
"eval_string_fake": ("STRING", {"multiline": True}),
"args_filter": ("STRING", {"multiline": True, "forceInput": True}),
"attention_modifiers_positive": ("ATTNMOD", {"forceInput": True}),
"attention_modifiers_negative": ("ATTNMOD", {"forceInput": True}),
"attention_modifiers_fake_negative": ("ATTNMOD", {"forceInput": True}),
"attention_modifiers_global": ("ATTNMOD", {"forceInput": True}),
}
}
RETURN_TYPES = ("MODEL","STRING",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG"
def patch(self, model, automatic_cfg = "None",
skip_uncond = False, fake_uncond_start = False, uncond_sigma_start = 1000, uncond_sigma_end = 0,
lerp_uncond = False, lerp_uncond_strength = 1, lerp_uncond_sigma_start = 1000, lerp_uncond_sigma_end = 1,
subtract_latent_mean = False, subtract_latent_mean_sigma_start = 1000, subtract_latent_mean_sigma_end = 1,
latent_intensity_rescale = False, latent_intensity_rescale_sigma_start = 1000, latent_intensity_rescale_sigma_end = 1,
cond_exp = False, cond_exp_sigma_start = 1000, cond_exp_sigma_end = 1000, cond_exp_method = "amplify", cond_exp_value = 2, cond_exp_normalize = False,
uncond_exp = False, uncond_exp_sigma_start = 1000, uncond_exp_sigma_end = 1000, uncond_exp_method = "amplify", uncond_exp_value = 2, uncond_exp_normalize = False,
fake_uncond_exp = False, fake_uncond_exp_method = "amplify", fake_uncond_exp_value = 2, fake_uncond_exp_normalize = False, fake_uncond_multiplier = 1, fake_uncond_sigma_start = 1000, fake_uncond_sigma_end = 1,
latent_intensity_rescale_cfg = 8, latent_intensity_rescale_method = "hard",
ignore_pre_cfg_func = False, args_filter = "", auto_cfg_topk = 0.25, auto_cfg_ref = 8,
eval_string_cond = "", eval_string_uncond = "", eval_string_fake = "",
attention_modifiers_global_enabled = False,
attention_modifiers_positive = [], attention_modifiers_negative = [], attention_modifiers_fake_negative = [], attention_modifiers_global = [],
disable_cond=False, disable_cond_sigma_start=1000,disable_cond_sigma_end=1000, save_as_preset = False, preset_name = "", **kwargs
):
# support_function()
model_options_copy = deepcopy(model.model_options)
monkey_patching_comfy_sampling_function()
if args_filter != "":
args_filter = args_filter.split(",")
else:
args_filter = [k for k, v in locals().items()]
not_in_filter = ['self','model','args','args_filter','save_as_preset','preset_name','model_options_copy']
if fake_uncond_exp_method != "eval":
not_in_filter.append("eval_string")
if save_as_preset and preset_name != "":
preset_parameters = {key: value for key, value in locals().items() if key not in not_in_filter}
with open(os.path.join(json_preset_path, preset_name+".json"), 'w', encoding='utf-8') as f:
json.dump(preset_parameters, f)
print(f"Preset saved with the name: {Fore.GREEN}{preset_name}{Fore.RESET}")
print(f"{Fore.RED}Don't forget to turn the save toggle OFF to not overwrite!{Fore.RESET}")
args_str = '\n'.join(f'{k}: {v}' for k, v in locals().items() if k not in not_in_filter and k in args_filter)
sigmin, sigmax = get_sigmin_sigmax(model)
lerp_start, lerp_end = lerp_uncond_sigma_start, lerp_uncond_sigma_end
subtract_start, subtract_end = subtract_latent_mean_sigma_start, subtract_latent_mean_sigma_end
rescale_start, rescale_end = latent_intensity_rescale_sigma_start, latent_intensity_rescale_sigma_end
print(f"Model maximum sigma: {sigmax} / Model minimum sigma: {sigmin}")
m = model.clone()
if skip_uncond or disable_cond:
# set model_options sampler_pre_cfg_automatic_cfg_function
m.model_options["sampler_pre_cfg_automatic_cfg_function"] = make_sampler_pre_cfg_automatic_cfg_function(uncond_sigma_end if skip_uncond else 0, uncond_sigma_start if skip_uncond else 100000,\
disable_cond_sigma_start if disable_cond else 100000, disable_cond_sigma_end if disable_cond else 100000)
print(f"Sampling function patched. Uncond enabled from {round(uncond_sigma_start,2)} to {round(uncond_sigma_end,2)}")
elif not ignore_pre_cfg_func:
m.model_options.pop("sampler_pre_cfg_automatic_cfg_function", None)
uncond_sigma_start, uncond_sigma_end = 1000000, 0
top_k = auto_cfg_topk
previous_cond_pred = None
previous_sigma = None
def automatic_cfg_function(args):
nonlocal previous_sigma
cond_scale = args["cond_scale"]
input_x = args["input"]
cond_pred = args["cond_denoised"]
uncond_pred = args["uncond_denoised"]
sigma = args["sigma"][0]
model_options = args["model_options"]
if self.previous_cond_pred is None:
self.previous_cond_pred = cond_pred.clone().detach().to(device=cond_pred.device)
if previous_sigma is None:
previous_sigma = sigma.item()
reference_cfg = auto_cfg_ref if auto_cfg_ref > 0 else cond_scale
def fake_uncond_step():
return fake_uncond_start and skip_uncond and (sigma > uncond_sigma_start or sigma < uncond_sigma_end) and sigma <= fake_uncond_sigma_start and sigma >= fake_uncond_sigma_end
if fake_uncond_step():
uncond_pred = cond_pred.clone().detach().to(device=cond_pred.device) * fake_uncond_multiplier
if cond_exp and sigma <= cond_exp_sigma_start and sigma >= cond_exp_sigma_end:
cond_pred = experimental_functions(cond_pred, cond_exp_method, cond_exp_value, cond_exp_normalize, self.previous_cond_pred, previous_sigma, sigma.item(), sigmax, attention_modifiers_positive, args, model_options_copy, eval_string_cond)
if uncond_exp and sigma <= uncond_exp_sigma_start and sigma >= uncond_exp_sigma_end and not fake_uncond_step():
uncond_pred = experimental_functions(uncond_pred, uncond_exp_method, uncond_exp_value, uncond_exp_normalize, self.previous_cond_pred, previous_sigma, sigma.item(), sigmax, attention_modifiers_negative, args, model_options_copy, eval_string_uncond)
if fake_uncond_step() and fake_uncond_exp:
uncond_pred = experimental_functions(uncond_pred, fake_uncond_exp_method, fake_uncond_exp_value, fake_uncond_exp_normalize, self.previous_cond_pred, previous_sigma, sigma.item(), sigmax, attention_modifiers_fake_negative, args, model_options_copy, eval_string_fake)
self.previous_cond_pred = cond_pred.clone().detach().to(device=cond_pred.device)
if sigma >= sigmax or cond_scale > 1:
self.last_cfg_ht_one = cond_scale
target_intensity = self.last_cfg_ht_one / 10
if ((check_skip(sigma, uncond_sigma_start, uncond_sigma_end) and skip_uncond) and not fake_uncond_step()) or cond_scale == 1:
return input_x - cond_pred
if lerp_uncond and not check_skip(sigma, lerp_start, lerp_end) and lerp_uncond_strength != 1:
uncond_pred_norm = uncond_pred.norm()
uncond_pred = torch.lerp(cond_pred, uncond_pred, lerp_uncond_strength)
uncond_pred = uncond_pred * uncond_pred_norm / uncond_pred.norm()
cond = input_x - cond_pred
uncond = input_x - uncond_pred
if automatic_cfg == "None":
return uncond + cond_scale * (cond - uncond)
denoised_tmp = input_x - (uncond + reference_cfg * (cond - uncond))
for b in range(len(denoised_tmp)):
denoised_ranges = get_denoised_ranges(denoised_tmp[b], automatic_cfg, top_k)
for c in range(len(denoised_tmp[b])):
fixeds_scale = reference_cfg * target_intensity / denoised_ranges[c]
denoised_tmp[b][c] = uncond[b][c] + fixeds_scale * (cond[b][c] - uncond[b][c])
return denoised_tmp
def center_mean_latent_post_cfg(args):
denoised = args["denoised"]
sigma = args["sigma"][0]
if check_skip(sigma, subtract_start, subtract_end):
return denoised
denoised = center_latent_mean_values(denoised, False, 1)
return denoised
def rescale_post_cfg(args):
denoised = args["denoised"]
sigma = args["sigma"][0]
if check_skip(sigma, rescale_start, rescale_end):
return denoised
target_intensity = latent_intensity_rescale_cfg / 10
for b in range(len(denoised)):
denoised_ranges = get_denoised_ranges(denoised[b], latent_intensity_rescale_method)
for c in range(len(denoised[b])):
scale_correction = target_intensity / denoised_ranges[c]
denoised[b][c] = denoised[b][c] * scale_correction
return denoised
tmp_model_options = deepcopy(m.model_options)
if attention_modifiers_global_enabled:
# print(f"{Fore.GREEN}Sigma timings are ignored for global modifiers.{Fore.RESET}")
for atm in attention_modifiers_global:
block_layers = {"input": atm['unet_block_id_input'], "middle": atm['unet_block_id_middle'], "output": atm['unet_block_id_output']}
for unet_block in block_layers:
for unet_block_id in block_layers[unet_block].split(","):
if unet_block_id != "":
unet_block_id = int(unet_block_id)
tmp_model_options = set_model_options_patch_replace(tmp_model_options, attention_modifier(atm['self_attn_mod_eval']).modified_attention, atm['unet_attn'], unet_block, unet_block_id)
m.model_options = tmp_model_options
if not ignore_pre_cfg_func:
m.set_model_sampler_cfg_function(automatic_cfg_function, disable_cfg1_optimization = False)
if subtract_latent_mean:
m.set_model_sampler_post_cfg_function(center_mean_latent_post_cfg)
if latent_intensity_rescale:
m.set_model_sampler_post_cfg_function(rescale_post_cfg)
return (m, args_str, )
class attentionModifierParametersNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"self_attn_mod_eval": ("STRING", {"multiline": True, "default": ""}),
"unet_block_id_input": ("STRING", {"multiline": False, "default": ""}),
"unet_block_id_middle": ("STRING", {"multiline": False, "default": ""}),
"unet_block_id_output": ("STRING", {"multiline": False, "default": ""}),
"unet_attn": (["attn1","attn2","both"],),
},
"optional":{
"join_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD","STRING",)
RETURN_NAMES = ("Attention modifier", "Parameters as string")
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def exec(self, join_parameters=None, **kwargs):
info_string = "\n".join([f"{k}: {v}" for k,v in kwargs.items() if v != ""])
if kwargs['unet_attn'] == "both":
copy_kwargs = kwargs.copy()
kwargs['unet_attn'] = "attn1"
copy_kwargs['unet_attn'] = "attn2"
out_modifiers = [kwargs, copy_kwargs]
else:
out_modifiers = [kwargs]
return (out_modifiers if join_parameters is None else join_parameters + out_modifiers, info_string, )
class attentionModifierBruteforceParametersNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"sigma_end": ("FLOAT", {"default": 0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"self_attn_mod_eval": ("STRING", {"multiline": True , "default": ""}),
"unet_block_id_input": ("STRING", {"multiline": False, "default": "4,5,7,8"}),
"unet_block_id_middle": ("STRING", {"multiline": False, "default": "0"}),
"unet_block_id_output": ("STRING", {"multiline": False, "default": "0,1,2,3,4,5"}),
"unet_attn": (["attn1","attn2","both"],),
},
"optional":{
"join_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD","STRING",)
RETURN_NAMES = ("Attention modifier", "Parameters as string")
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def create_sequence_parameters(self, input_str, middle_str, output_str):
input_values = input_str.split(",") if input_str else []
middle_values = middle_str.split(",") if middle_str else []
output_values = output_str.split(",") if output_str else []
result = []
result.extend([{"unet_block_id_input": val, "unet_block_id_middle": "", "unet_block_id_output": ""} for val in input_values])
result.extend([{"unet_block_id_input": "", "unet_block_id_middle": val, "unet_block_id_output": ""} for val in middle_values])
result.extend([{"unet_block_id_input": "", "unet_block_id_middle": "", "unet_block_id_output": val} for val in output_values])
return result
def exec(self, seed, join_parameters=None, **kwargs):
sequence_parameters = self.create_sequence_parameters(kwargs['unet_block_id_input'],kwargs['unet_block_id_middle'],kwargs['unet_block_id_output'])
lenseq = len(sequence_parameters)
current_index = seed % lenseq
current_sequence = sequence_parameters[current_index]
kwargs["unet_block_id_input"] = current_sequence["unet_block_id_input"]
kwargs["unet_block_id_middle"] = current_sequence["unet_block_id_middle"]
kwargs["unet_block_id_output"] = current_sequence["unet_block_id_output"]
if current_sequence["unet_block_id_input"] != "":
current_block_string = f"unet_block_id_input: {current_sequence['unet_block_id_input']}"
elif current_sequence["unet_block_id_middle"] != "":
current_block_string = f"unet_block_id_middle: {current_sequence['unet_block_id_middle']}"
elif current_sequence["unet_block_id_output"] != "":
current_block_string = f"unet_block_id_output: {current_sequence['unet_block_id_output']}"
info_string = f"Progress: {current_index+1}/{lenseq}\n{kwargs['self_attn_mod_eval']}\n{kwargs['unet_attn']} {current_block_string}"
if kwargs['unet_attn'] == "both":
copy_kwargs = kwargs.copy()
kwargs['unet_attn'] = "attn1"
copy_kwargs['unet_attn'] = "attn2"
out_modifiers = [kwargs, copy_kwargs]
else:
out_modifiers = [kwargs]
return (out_modifiers if join_parameters is None else join_parameters + out_modifiers, info_string, )
class attentionModifierConcatNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"parameters_1": ("ATTNMOD", {"forceInput": True}),
"parameters_2": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("ATTNMOD",)
FUNCTION = "exec"
CATEGORY = "model_patches/Automatic_CFG/experimental_attention_modifiers"
def exec(self, parameters_1, parameters_2):
output_parms = parameters_1 + parameters_2
return (output_parms, )
class simpleDynamicCFG:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"hard_mode" : ("BOOLEAN", {"default": True}),
"boost" : ("BOOLEAN", {"default": True}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model, hard_mode, boost):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model,
skip_uncond = boost,
uncond_sigma_start = 1000, uncond_sigma_end = 1,
automatic_cfg = "hard" if hard_mode else "soft"
)[0]
return (m, )
class presetLoader:
@classmethod
def INPUT_TYPES(s):
presets_files = [pj.replace(".json","") for pj in os.listdir(json_preset_path) if ".json" in pj and pj not in ["Experimental_temperature.json","do_not_delete.json"]]
presets_files = sorted(presets_files, key=str.lower)
return {"required": {
"model": ("MODEL",),
"preset" : (presets_files, {"default": "Excellent_attention"}),
"uncond_sigma_end": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"use_uncond_sigma_end_from_preset" : ("BOOLEAN", {"default": True}),
"automatic_cfg" : (["From preset","None", "soft", "hard", "hard_squared", "range"],),
},
"optional":{
"join_global_parameters": ("ATTNMOD", {"forceInput": True}),
}}
RETURN_TYPES = ("MODEL", "STRING", "STRING",)
RETURN_NAMES = ("Model", "Preset name", "Parameters as string",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG"
def patch(self, model, preset, uncond_sigma_end, use_uncond_sigma_end_from_preset, automatic_cfg, join_global_parameters=None):
with open(os.path.join(json_preset_path, preset+".json"), 'r', encoding='utf-8') as f:
preset_args = json.load(f)
if not use_uncond_sigma_end_from_preset:
preset_args["uncond_sigma_end"] = uncond_sigma_end
preset_args["fake_uncond_sigma_end"] = uncond_sigma_end
preset_args["fake_uncond_exp_sigma_end"] = uncond_sigma_end
preset_args["uncond_exp_sigma_end"] = uncond_sigma_end
if join_global_parameters is not None:
preset_args["attention_modifiers_global"] = preset_args["attention_modifiers_global"] + join_global_parameters
preset_args["attention_modifiers_global_enabled"] = True
if automatic_cfg != "From preset":
preset_args["automatic_cfg"] = automatic_cfg
advcfg = advancedDynamicCFG()
m = advcfg.patch(model, **preset_args)[0]
info_string = ",\n".join([f"\"{k}\": {v}" for k,v in preset_args.items() if v != ""])
print(f"Preset {Fore.GREEN}{preset}{Fore.RESET} loaded successfully!")
return (m, preset, info_string,)
class simpleDynamicCFGlerpUncond:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"boost" : ("BOOLEAN", {"default": True}),
"negative_strength": ("FLOAT", {"default": 1, "min": 0.0, "max": 5.0, "step": 0.1, "round": 0.1}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model, boost, negative_strength):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model=model,
automatic_cfg="hard", skip_uncond=boost,
uncond_sigma_start = 15, uncond_sigma_end = 1,
lerp_uncond=negative_strength != 1, lerp_uncond_strength=negative_strength,
lerp_uncond_sigma_start = 15, lerp_uncond_sigma_end = 1
)[0]
return (m, )
class postCFGrescaleOnly:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"subtract_latent_mean" : ("BOOLEAN", {"default": True}),
"subtract_latent_mean_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
"subtract_latent_mean_sigma_end": ("FLOAT", {"default": 7.5, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale" : ("BOOLEAN", {"default": True}),
"latent_intensity_rescale_method" : (["soft","hard","range"], {"default": "hard"},),
"latent_intensity_rescale_cfg" : ("FLOAT", {"default": 8, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale_sigma_start": ("FLOAT", {"default": 1000, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
"latent_intensity_rescale_sigma_end": ("FLOAT", {"default": 5, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.1}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/utils"
def patch(self, model,
subtract_latent_mean, subtract_latent_mean_sigma_start, subtract_latent_mean_sigma_end,
latent_intensity_rescale, latent_intensity_rescale_method, latent_intensity_rescale_cfg, latent_intensity_rescale_sigma_start, latent_intensity_rescale_sigma_end
):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model=model,
subtract_latent_mean = subtract_latent_mean,
subtract_latent_mean_sigma_start = subtract_latent_mean_sigma_start, subtract_latent_mean_sigma_end = subtract_latent_mean_sigma_end,
latent_intensity_rescale = latent_intensity_rescale, latent_intensity_rescale_cfg = latent_intensity_rescale_cfg, latent_intensity_rescale_method = latent_intensity_rescale_method,
latent_intensity_rescale_sigma_start = latent_intensity_rescale_sigma_start, latent_intensity_rescale_sigma_end = latent_intensity_rescale_sigma_end,
ignore_pre_cfg_func = True
)[0]
return (m, )
class simpleDynamicCFGHighSpeed:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model):
advcfg = advancedDynamicCFG()
m = advcfg.patch(model=model, automatic_cfg = "hard",
skip_uncond = True, uncond_sigma_start = 7.5, uncond_sigma_end = 1)[0]
return (m, )
class simpleDynamicCFGwarpDrive:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"uncond_sigma_start": ("FLOAT", {"default": 5.5, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"uncond_sigma_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
"fake_uncond_sigma_end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10000.0, "step": 0.1, "round": 0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "model_patches/Automatic_CFG/presets"
def patch(self, model, uncond_sigma_start, uncond_sigma_end, fake_uncond_sigma_end):
advcfg = advancedDynamicCFG()
print(f" {Fore.CYAN}WARP DRIVE MODE ENGAGED!{Style.RESET_ALL}\n Settings suggestions:\n"
f" {Fore.GREEN}1/1/1: {Fore.YELLOW}Maaaxxxiiimum speeeeeed.{Style.RESET_ALL} {Fore.RED}Uncond disabled.{Style.RESET_ALL} {Fore.MAGENTA}Fasten your seatbelt!{Style.RESET_ALL}\n"
f" {Fore.GREEN}3/1/1: {Fore.YELLOW}Risky space-time continuum distortion.{Style.RESET_ALL} {Fore.MAGENTA}Awesome for prompts with a clear subject!{Style.RESET_ALL}\n"
f" {Fore.GREEN}5.5/1/1: {Fore.YELLOW}Frameshift Drive Autopilot: {Fore.GREEN}Engaged.{Style.RESET_ALL} {Fore.MAGENTA}Should work with anything but do it better and faster!{Style.RESET_ALL}")
m = advcfg.patch(model=model, automatic_cfg = "hard",
skip_uncond = True, uncond_sigma_start = uncond_sigma_start, uncond_sigma_end = uncond_sigma_end,
fake_uncond_sigma_end = fake_uncond_sigma_end, fake_uncond_sigma_start = 1000, fake_uncond_start=True,
fake_uncond_exp=True,fake_uncond_exp_normalize=True,fake_uncond_exp_method="previous_average",
cond_exp = False, cond_exp_sigma_start = 9, cond_exp_sigma_end = uncond_sigma_start, cond_exp_method = "erf", cond_exp_normalize = True,
)[0]
return (m, )
class simpleDynamicCFGunpatch:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "unpatch"
CATEGORY = "model_patches/Automatic_CFG/utils"