-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_longExp.py
220 lines (183 loc) · 12.5 KB
/
run_longExp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import sys
import random
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
# random seed
parser.add_argument('--random_seed', type=int, default=2021, help='random seed')
# basic configchann
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--exponential', action='store_true', help='status')
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id')
parser.add_argument('--model', type=str, required=True, default='Autoformer',
help='model name, options: [Autoformer, Informer, Transformer]')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate '
'predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, '
'b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--window', type=int, default=24, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# DLinear parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for
# each variate(channel) individually')
# PatchTST
parser.add_argument('--fc_dropout', type=float, default=0.0, help='fully connected dropout')
parser.add_argument('--head_dropout', type=float, default=0.0, help='head dropout')
parser.add_argument('--individual', action='store_true', default=False, help='add')
parser.add_argument('--add', action='store_true', default=False, help='add')
parser.add_argument('--wo_conv', action='store_true', default=False, help='without convolution')
parser.add_argument('--serial_conv', action='store_true', default=False, help='serial convolution')
parser.add_argument('--kernel_list', type=int, nargs='+', default=[3, 7, 9], help='kernel size list')
parser.add_argument('--patch_len', type=int, nargs='+', default=[16], help='patch high')
parser.add_argument('--period', type=int, nargs='+', default=[24, 12], help='period list')
parser.add_argument('--stride', type=int, nargs='+', default=None, help='stride')
parser.add_argument('--padding_patch', default='end', help='None: None; end: padding on the end')
parser.add_argument('--revin', type=int, default=1, help='RevIN; True 1 False 0')
parser.add_argument('--affine', type=int, default=0, help='RevIN-affine; True 1 False 0')
parser.add_argument('--subtract_last', type=int, default=0, help='0: subtract mean; 1: subtract last')
parser.add_argument('--decomposition', type=int, default=0, help='decomposition; True 1 False 0')
parser.add_argument('--kernel_size', type=int, default=25, help='decomposition-kernel')
# Formers
parser.add_argument('--embed_type', type=int, default=0,
help='0: default 1: value patch_embedding + temporal patch_embedding + positional patch_embedding 2: value '
'patch_embedding + temporal patch_embedding 3: value patch_embedding + positional patch_embedding 4: value patch_embedding')
parser.add_argument('--enc_in', type=int, default=7,
help='global_encoder input size') # DLinear with --individual, use this hyperparameter as the number of
# channels
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--m_model', type=int, default=256, help='dimension of model')
parser.add_argument('--f_model', type=int, default=0, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of global_encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--m_layers', type=int, default=0, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in global_encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--attn_dropout', type=float, default=0.05, help='attention dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--anti_fre_loss', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--drop_last', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
parser.add_argument('--batch_size', type=int, default=16, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=100, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type3', help='adjust learning rate')
parser.add_argument('--pct_start', type=float, default=0.3, help='pct_start')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3,4,5,6', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
# output log file
parser.add_argument('--log', type=str, default='./logs/LongForecasting/PatchTST_Electricity_336_96.log',
help='path of output log file')
args = parser.parse_args()
drop_last='_drop_last' if args.drop_last else''
if args.data != 'custom':
output_path = f"./perf_results/{args.data}/{args.seq_len}/{args.pred_len}/{args.model}/{args.learning_rate}_{args.batch_size}_{args.dropout}_{args.fc_dropout}_{args.d_model}_{args.d_ff}_{args.e_layers}_{args.period[0]}_{args.m_layers}_{args.m_model}_{args.f_model}_{args.lradj}{drop_last}/performance.yaml"
else:
if args.data_path.split('.')[0]!='traffic':
output_path = f"./perf_results/{args.data_path.split('.')[0]}/{args.seq_len}/{args.pred_len}/{args.model}/{args.learning_rate}_{args.batch_size}_{args.dropout}_{args.fc_dropout}_{args.d_model}_{args.d_ff}_{args.e_layers}_{args.period[0]}_{args.m_layers}_{args.m_model}_{args.f_model}_{args.lradj}{drop_last}/performance.yaml"
else:
output_path = f"./perf_results/{args.data_path.split('.')[0]}/{args.seq_len}/{args.pred_len}/{args.model}/{args.learning_rate}_{args.batch_size}_{args.dropout}_{args.fc_dropout}_{args.d_model}_{args.d_ff}_{args.e_layers}_{args.period[0]}_{args.m_layers}_{args.m_model}_{args.f_model}_{args.lradj}{drop_last}/performance.yaml"
import torch
from exp.exp_main import Exp_Main
import numpy as np
if os.path.exists(output_path):
print(output_path+':exsited')
# exit()
print('Args in experiment:')
print(args)
# output
# sys.stdout = open(args.log, 'w')
# random seed
fix_seed = args.random_seed
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
Exp = Exp_Main
if args.is_training:
for ii in range(args.itr):
# setting record of experiments
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}{}'.format(
args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii,drop_last)
exp = Exp(args) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)
if args.do_predict:
print('>>>>>>>predicting : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.predict(setting, True)
torch.cuda.empty_cache()
else:
ii = 0
setting = '{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}_{}'.format(args.model_id,
args.model,
args.data,
args.features,
args.seq_len,
args.label_len,
args.pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des, ii)
exp = Exp(args) # set experiments
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting, test=1)
torch.cuda.empty_cache()