StarRocks sink connector
Spark
Flink
SeaTunnel Zeta
Used to send data to StarRocks. Both support streaming and batch mode. The internal implementation of StarRocks sink connector is cached and imported by stream load in batches.
Name | Type | Required | Default | Description |
---|---|---|---|---|
nodeUrls | list | yes | - | StarRocks cluster address, the format is ["fe_ip:fe_http_port", ...] |
base-url | string | yes | - | The JDBC URL like jdbc:mysql://localhost:9030/ or jdbc:mysql://localhost:9030 or jdbc:mysql://localhost:9030/db |
username | string | yes | - | StarRocks user username |
password | string | yes | - | StarRocks user password |
database | string | yes | - | The name of StarRocks database |
table | string | no | - | The name of StarRocks table, If not set, the table name will be the name of the upstream table |
labelPrefix | string | no | - | The prefix of StarRocks stream load label |
batch_max_rows | long | no | 1024 | For batch writing, when the number of buffers reaches the number of batch_max_rows or the byte size of batch_max_bytes or the time reaches batch_interval_ms , the data will be flushed into the StarRocks |
batch_max_bytes | int | no | 5 * 1024 * 1024 | For batch writing, when the number of buffers reaches the number of batch_max_rows or the byte size of batch_max_bytes or the time reaches batch_interval_ms , the data will be flushed into the StarRocks |
batch_interval_ms | int | no | - | For batch writing, when the number of buffers reaches the number of batch_max_rows or the byte size of batch_max_bytes or the time reaches batch_interval_ms , the data will be flushed into the StarRocks |
max_retries | int | no | - | The number of retries to flush failed |
retry_backoff_multiplier_ms | int | no | - | Using as a multiplier for generating the next delay for backoff |
max_retry_backoff_ms | int | no | - | The amount of time to wait before attempting to retry a request to StarRocks |
enable_upsert_delete | boolean | no | false | Whether to enable upsert/delete, only supports PrimaryKey model. |
save_mode_create_template | string | no | see below | see below |
starrocks.config | map | no | - | The parameter of the stream load data_desc |
We use templates to automatically create starrocks tables, which will create corresponding table creation statements based on the type of upstream data and schema type, and the default template can be modified according to the situation. Only work on multi-table mode at now.
CREATE TABLE IF NOT EXISTS `${database}`.`${table_name}`
(
${rowtype_fields}
) ENGINE = OLAP DISTRIBUTED BY HASH (${rowtype_primary_key})
PROPERTIES
(
"replication_num" = "1"
);
If a custom field is filled in the template, such as adding an id
field
CREATE TABLE IF NOT EXISTS `${database}`.`${table_name}`
(
id,
${rowtype_fields}
) ENGINE = OLAP DISTRIBUTED BY HASH (${rowtype_primary_key})
PROPERTIES
(
"replication_num" = "1"
);
The connector will automatically obtain the corresponding type from the upstream to complete the filling,
and remove the id field from rowtype_fields
. This method can be used to customize the modification of field types and attributes.
You can use the following placeholders
- database: Used to get the database in the upstream schema
- table_name: Used to get the table name in the upstream schema
- rowtype_fields: Used to get all the fields in the upstream schema, we will automatically map to the field description of StarRocks
- rowtype_primary_key: Used to get the primary key in the upstream schema (maybe a list)
StarRocks Data type | SeaTunnel Data type |
---|---|
BOOLEAN | BOOLEAN |
TINYINT | TINYINT |
SMALLINT | SMALLINT |
INT | INT |
BIGINT | BIGINT |
FLOAT | FLOAT |
DOUBLE | DOUBLE |
DECIMAL | DECIMAL |
DATE | STRING |
TIME | STRING |
DATETIME | STRING |
STRING | STRING |
ARRAY | STRING |
MAP | STRING |
BYTES | STRING |
The supported formats include CSV and JSON
The following example describes writing multiple data types to StarRocks, and users need to create corresponding tables downstream
env {
parallelism = 1
job.mode = "BATCH"
checkpoint.interval = 10000
}
source {
FakeSource {
row.num = 10
map.size = 10
array.size = 10
bytes.length = 10
string.length = 10
schema = {
fields {
c_map = "map<string, array<int>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(16, 1)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
username = root
password = ""
database = "test"
table = "e2e_table_sink"
batch_max_rows = 10
starrocks.config = {
format = "JSON"
strip_outer_array = true
}
}
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
username = root
password = ""
database = "test"
table = "e2e_table_sink"
...
// Support upsert/delete event synchronization (enable_upsert_delete=true), only supports PrimaryKey model.
enable_upsert_delete = true
}
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
username = root
password = ""
database = "test"
table = "e2e_table_sink"
batch_max_rows = 10
starrocks.config = {
format = "JSON"
strip_outer_array = true
}
}
}
sink {
StarRocks {
nodeUrls = ["e2e_starRocksdb:8030"]
username = root
password = ""
database = "test"
table = "e2e_table_sink"
batch_max_rows = 10
starrocks.config = {
format = "CSV"
column_separator = "\\x01"
row_delimiter = "\\x02"
}
}
}