-
Notifications
You must be signed in to change notification settings - Fork 0
/
inception_retrain.py
1018 lines (937 loc) · 43.3 KB
/
inception_retrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Inception v3 architecture 모델을 이용한 간단한 Transfer Learning (TensorBoard 포함)
This example shows how to take a Inception v3 architecture model trained on
ImageNet images, and train a new top layer that can recognize other classes of
images.
The top layer receives as input a 2048-dimensional vector for each image. We
train a softmax layer on top of this representation. Assuming the softmax layer
contains N labels, this corresponds to learning N + 2048*N model parameters
corresponding to the learned biases and weights.
Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:
~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
...
~/flower_photos/rose/anotherphoto77.jpg
...
~/flower_photos/sunflower/somepicture.jpg
The subfolder names are important, since they define what label is applied to
each image, but the filenames themselves don't matter. Once your images are
prepared, you can run the training with a command like this:
```bash
bazel build tensorflow/examples/image_retraining:retrain && \
bazel-bin/tensorflow/examples/image_retraining/retrain \
--image_dir ~/flower_photos
```
Or, if you have a pip installation of tensorflow, `retrain.py` can be run
without bazel:
```bash
python tensorflow/examples/image_retraining/retrain.py \
--image_dir ~/flower_photos
```
You can replace the image_dir argument with any folder containing subfolders of
images. The label for each image is taken from the name of the subfolder it's
in.
This produces a new model file that can be loaded and run by any TensorFlow
program, for example the label_image sample code.
To use with TensorBoard:
By default, this script will log summaries to /tmp/retrain_logs directory
Visualize the summaries with this command:
tensorboard --logdir /tmp/retrain_logs
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from datetime import datetime
import hashlib
import os.path
import random
import re
import struct
import sys
import tarfile
import numpy as np
from six.moves import urllib
import tensorflow as tf
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compat
FLAGS = None
# 모든 파라미터들은 특정한 모델 architecture와 묶여(tied) 있다.
# 우리는 Inception v3를 사용할 것이다. 이는 tensor 이름이나 사이즈들을 포함하고 있다.
# 만약 당신이 이 스크립트를 다른 모델에 사용하고 싶다면,
# 당신이 사용하는 network를 반영하도록 tensor 이름이나 사이즈들을 변경해야만 할 것이다.
DATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
BOTTLENECK_TENSOR_SIZE = 2048
MODEL_INPUT_WIDTH = 299
MODEL_INPUT_HEIGHT = 299
MODEL_INPUT_DEPTH = 3
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
RESIZED_INPUT_TENSOR_NAME = 'ResizeBilinear:0'
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1 # ~134M
def create_image_lists(image_dir, testing_percentage, validation_percentage):
"""file system으로부터 training 이미지들의 list를 만든다.
이미지 디렉토리로부터 sub folder들을 분석하고, 그들을 training, testing, validation sets으로 나눈다.
그리고 각각의 label을 위한 이미지 list와 그들의 경로(path)를 나타내는 자료구조(data structure)를 반환한다.
인수들(Args):
image_dir: 이미지들의 subfolder들을 포함한 folder의 String path.
testing_percentage: 전체 이미지중 테스트를 위해 사용되는 비율을 나타내는 Integer.
validation_percentage: 전체 이미지중 validation을 위해 사용되는 비율을 나타내는 Integer.
반환값들(Returns):
각각의 label subfolder를 위한 enrtry를 포함한 dictionary A dictionary
(각각의 label에서 이미지드릉ㄴ training, testing, validation sets으로 나뉘어져 있다.)
"""
if not gfile.Exists(image_dir):
print("Image directory '" + image_dir + "' not found.")
return None
result = {}
sub_dirs = [x[0] for x in gfile.Walk(image_dir)]
# root directory는 처음에 온다. 따라서 이를 skip한다.
is_root_dir = True
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue
extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
file_list = []
dir_name = os.path.basename(sub_dir)
if dir_name == image_dir:
continue
print("Looking for images in '" + dir_name + "'")
for extension in extensions:
file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
file_list.extend(gfile.Glob(file_glob))
if not file_list:
print('No files found')
continue
if len(file_list) < 20:
print('WARNING: Folder has less than 20 images, which may cause issues.')
elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
print('WARNING: Folder {} has more than {} images. Some images will '
'never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name)
# 어떤 이미지로 리스트를 만들지 결정할때 파일 이름에 "_nohash_"가 포함되어 있으면 이를 무시할 수 있다.
# 이를 이용해서, 데이터셋을 만드는 사람은 서로 비슷한 사진들을 grouping할 수있다.
# 예를 들어, plant disease를 데이터셋을 만들기 위해서, 여러 장의 같은 잎사귀(leaf)를 grouping할 수 있다.
hash_name = re.sub(r'_nohash_.*$', '', file_name)
# 이는 일종의 마법처럼 보일 수 있다. 하지만, 우리는 이 파일이 training sets로 갈지, testing sets로 갈지, validation sets로 갈지 결정해야만 한다.
# 그리고 우리는 더많은 파일들이 추가되더라도, 같은 set에 이미 존재하는 파일들이 유지되길 원한다.
# 그렇게 하기 위해서는, 우리는 파일 이름 그자체로부터 결정하는 안정적인 방법이 있어야만 한다.
# 따라서, 우리는 파일 이름을 hash하고, 이를 이를 할당하는데 사용하는 확률을 결정하는데 사용한다.
hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()
percentage_hash = ((int(hash_name_hashed, 16) %
(MAX_NUM_IMAGES_PER_CLASS + 1)) *
(100.0 / MAX_NUM_IMAGES_PER_CLASS))
if percentage_hash < validation_percentage:
validation_images.append(base_name)
elif percentage_hash < (testing_percentage + validation_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
result[label_name] = {
'dir': dir_name,
'training': training_images,
'testing': testing_images,
'validation': validation_images,
}
return result
def get_image_path(image_lists, label_name, index, image_dir, category):
""""주어진 index에 대한 이미지 경로(path)를 리턴한다.
인수들(Args):
image_lists: 각각의 label에 대한 training image들의 Dictionary.
label_name: 우리가 얻고자하는 이미지의 Label string.
index: 우리가 얻고자하는 이미지의 Int offset. 이는 레이블에 대한 가능한 이미지의 개수에 따라 moduloed 될 것이다.
따라서 임의의 큰값이 될 수도 있다.
image_dir: training 이미지들의 subfolder들을 포함하고 있는 Root folder string
category: training, testing, 또는 validation sets으로부터 이미지에 pull할 Name string
반환값(Returns):
요청된 파라미터들이 만나게 될 이미지에 대한 파일 시스템 경로(file system path) string
"""
if label_name not in image_lists:
tf.logging.fatal('Label does not exist %s.', label_name)
label_lists = image_lists[label_name]
if category not in label_lists:
tf.logging.fatal('Category does not exist %s.', category)
category_list = label_lists[category]
if not category_list:
tf.logging.fatal('Label %s has no images in the category %s.',
label_name, category)
mod_index = index % len(category_list)
base_name = category_list[mod_index]
sub_dir = label_lists['dir']
full_path = os.path.join(image_dir, sub_dir, base_name)
return full_path
def get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,
category):
""""Returns a path to a bottleneck file for a label at the given index.
Args:
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be moduloed by the
available number of images for the label, so it can be arbitrarily large.
bottleneck_dir: Folder string holding cached files of bottleneck values.
category: Name string of set to pull images from - training, testing, or
validation.
Returns:
File system path string to an image that meets the requested parameters.
"""
return get_image_path(image_lists, label_name, index, bottleneck_dir,
category) + '.txt'
def create_inception_graph():
""""Creates a graph from saved GraphDef file and returns a Graph object.
Returns:
Graph holding the trained Inception network, and various tensors we'll be
manipulating.
"""
with tf.Graph().as_default() as graph:
model_filename = os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb')
with gfile.FastGFile(model_filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, jpeg_data_tensor, resized_input_tensor = (
tf.import_graph_def(graph_def, name='', return_elements=[
BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME,
RESIZED_INPUT_TENSOR_NAME]))
return graph, bottleneck_tensor, jpeg_data_tensor, resized_input_tensor
def run_bottleneck_on_image(sess, image_data, image_data_tensor,
bottleneck_tensor):
"""Runs inference on an image to extract the 'bottleneck' summary layer.
Args:
sess: Current active TensorFlow Session.
image_data: String of raw JPEG data.
image_data_tensor: Input data layer in the graph.
bottleneck_tensor: Layer before the final softmax.
Returns:
Numpy array of bottleneck values.
"""
bottleneck_values = sess.run(
bottleneck_tensor,
{image_data_tensor: image_data})
bottleneck_values = np.squeeze(bottleneck_values)
return bottleneck_values
def maybe_download_and_extract():
"""Download and extract model tar file.
If the pretrained model we're using doesn't already exist, this function
downloads it from the TensorFlow.org website and unpacks it into a directory.
"""
dest_directory = FLAGS.model_dir
if not os.path.exists(dest_directory):
os.makedirs(dest_directory)
filename = DATA_URL.split('/')[-1]
filepath = os.path.join(dest_directory, filename)
if not os.path.exists(filepath):
def _progress(count, block_size, total_size):
sys.stdout.write('\r>> Downloading %s %.1f%%' %
(filename,
float(count * block_size) / float(total_size) * 100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(DATA_URL,
filepath,
_progress)
print()
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
tarfile.open(filepath, 'r:gz').extractall(dest_directory)
def ensure_dir_exists(dir_name):
"""Makes sure the folder exists on disk.
Args:
dir_name: Path string to the folder we want to create.
"""
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def write_list_of_floats_to_file(list_of_floats, file_path):
"""Writes a given list of floats to a binary file.
Args:
list_of_floats: List of floats we want to write to a file.
file_path: Path to a file where list of floats will be stored.
"""
s = struct.pack('d' * BOTTLENECK_TENSOR_SIZE, *list_of_floats)
with open(file_path, 'wb') as f:
f.write(s)
def read_list_of_floats_from_file(file_path):
"""Reads list of floats from a given file.
Args:
file_path: Path to a file where list of floats was stored.
Returns:
Array of bottleneck values (list of floats).
"""
with open(file_path, 'rb') as f:
s = struct.unpack('d' * BOTTLENECK_TENSOR_SIZE, f.read())
return list(s)
bottleneck_path_2_bottleneck_values = {}
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
bottleneck_tensor):
"""Create a single bottleneck file."""
print('Creating bottleneck at ' + bottleneck_path)
image_path = get_image_path(image_lists, label_name, index,
image_dir, category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
image_data = gfile.FastGFile(image_path, 'rb').read()
try:
bottleneck_values = run_bottleneck_on_image(
sess, image_data, jpeg_data_tensor, bottleneck_tensor)
except:
raise RuntimeError('Error during processing file %s' % image_path)
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with open(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,
category, bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor):
"""Retrieves or calculates bottleneck values for an image.
If a cached version of the bottleneck data exists on-disk, return that,
otherwise calculate the data and save it to disk for future use.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
label_name: Label string we want to get an image for.
index: Integer offset of the image we want. This will be modulo-ed by the
available number of images for the label, so it can be arbitrarily large.
image_dir: Root folder string of the subfolders containing the training
images.
category: Name string of which set to pull images from - training, testing,
or validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: The tensor to feed loaded jpeg data into.
bottleneck_tensor: The output tensor for the bottleneck values.
Returns:
Numpy array of values produced by the bottleneck layer for the image.
"""
label_lists = image_lists[label_name]
sub_dir = label_lists['dir']
sub_dir_path = os.path.join(bottleneck_dir, sub_dir)
ensure_dir_exists(sub_dir_path)
bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
bottleneck_dir, category)
if not os.path.exists(bottleneck_path):
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
did_hit_error = False
try:
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
except ValueError:
print('Invalid float found, recreating bottleneck')
did_hit_error = True
if did_hit_error:
create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
bottleneck_tensor)
with open(bottleneck_path, 'r') as bottleneck_file:
bottleneck_string = bottleneck_file.read()
# Allow exceptions to propagate here, since they shouldn't happen after a
# fresh creation
bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
return bottleneck_values
def cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,
jpeg_data_tensor, bottleneck_tensor):
"""Ensures all the training, testing, and validation bottlenecks are cached.
Because we're likely to read the same image multiple times (if there are no
distortions applied during training) it can speed things up a lot if we
calculate the bottleneck layer values once for each image during
preprocessing, and then just read those cached values repeatedly during
training. Here we go through all the images we've found, calculate those
values, and save them off.
Args:
sess: The current active TensorFlow Session.
image_lists: Dictionary of training images for each label.
image_dir: Root folder string of the subfolders containing the training
images.
bottleneck_dir: Folder string holding cached files of bottleneck values.
jpeg_data_tensor: Input tensor for jpeg data from file.
bottleneck_tensor: The penultimate output layer of the graph.
Returns:
Nothing.
"""
how_many_bottlenecks = 0
ensure_dir_exists(bottleneck_dir)
for label_name, label_lists in image_lists.items():
for category in ['training', 'testing', 'validation']:
category_list = label_lists[category]
for index, unused_base_name in enumerate(category_list):
get_or_create_bottleneck(sess, image_lists, label_name, index,
image_dir, category, bottleneck_dir,
jpeg_data_tensor, bottleneck_tensor)
how_many_bottlenecks += 1
if how_many_bottlenecks % 100 == 0:
print(str(how_many_bottlenecks) + ' bottleneck files created.')
def get_random_cached_bottlenecks(sess, image_lists, how_many, category,
bottleneck_dir, image_dir, jpeg_data_tensor,
bottleneck_tensor):
"""Retrieves bottleneck values for cached images.
If no distortions are being applied, this function can retrieve the cached
bottleneck values directly from disk for images. It picks a random set of
images from the specified category.
Args:
sess: Current TensorFlow Session.
image_lists: Dictionary of training images for each label.
how_many: If positive, a random sample of this size will be chosen.
If negative, all bottlenecks will be retrieved.
category: Name string of which set to pull from - training, testing, or
validation.
bottleneck_dir: Folder string holding cached files of bottleneck values.
image_dir: Root folder string of the subfolders containing the training
images.
jpeg_data_tensor: The layer to feed jpeg image data into.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
Returns:
List of bottleneck arrays, their corresponding ground truths, and the
relevant filenames.
"""
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
filenames = []
if how_many >= 0:
# Retrieve a random sample of bottlenecks.
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
else:
# Retrieve all bottlenecks.
for label_index, label_name in enumerate(image_lists.keys()):
for image_index, image_name in enumerate(
image_lists[label_name][category]):
image_name = get_image_path(image_lists, label_name, image_index,
image_dir, category)
bottleneck = get_or_create_bottleneck(sess, image_lists, label_name,
image_index, image_dir, category,
bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
filenames.append(image_name)
return bottlenecks, ground_truths, filenames
def get_random_distorted_bottlenecks(
sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,
distorted_image, resized_input_tensor, bottleneck_tensor):
"""Retrieves bottleneck values for training images, after distortions.
If we're training with distortions like crops, scales, or flips, we have to
recalculate the full model for every image, and so we can't use cached
bottleneck values. Instead we find random images for the requested category,
run them through the distortion graph, and then the full graph to get the
bottleneck results for each.
Args:
sess: Current TensorFlow Session.
image_lists: Dictionary of training images for each label.
how_many: The integer number of bottleneck values to return.
category: Name string of which set of images to fetch - training, testing,
or validation.
image_dir: Root folder string of the subfolders containing the training
images.
input_jpeg_tensor: The input layer we feed the image data to.
distorted_image: The output node of the distortion graph.
resized_input_tensor: The input node of the recognition graph.
bottleneck_tensor: The bottleneck output layer of the CNN graph.
Returns:
List of bottleneck arrays and their corresponding ground truths.
"""
class_count = len(image_lists.keys())
bottlenecks = []
ground_truths = []
for unused_i in range(how_many):
label_index = random.randrange(class_count)
label_name = list(image_lists.keys())[label_index]
image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)
image_path = get_image_path(image_lists, label_name, image_index, image_dir,
category)
if not gfile.Exists(image_path):
tf.logging.fatal('File does not exist %s', image_path)
jpeg_data = gfile.FastGFile(image_path, 'rb').read()
# Note that we materialize the distorted_image_data as a numpy array before
# sending running inference on the image. This involves 2 memory copies and
# might be optimized in other implementations.
distorted_image_data = sess.run(distorted_image,
{input_jpeg_tensor: jpeg_data})
bottleneck = run_bottleneck_on_image(sess, distorted_image_data,
resized_input_tensor,
bottleneck_tensor)
ground_truth = np.zeros(class_count, dtype=np.float32)
ground_truth[label_index] = 1.0
bottlenecks.append(bottleneck)
ground_truths.append(ground_truth)
return bottlenecks, ground_truths
def should_distort_images(flip_left_right, random_crop, random_scale,
random_brightness):
"""Whether any distortions are enabled, from the input flags.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
Returns:
Boolean value indicating whether any distortions should be applied.
"""
return (flip_left_right or (random_crop != 0) or (random_scale != 0) or
(random_brightness != 0))
def add_input_distortions(flip_left_right, random_crop, random_scale,
random_brightness):
"""Creates the operations to apply the specified distortions.
During training it can help to improve the results if we run the images
through simple distortions like crops, scales, and flips. These reflect the
kind of variations we expect in the real world, and so can help train the
model to cope with natural data more effectively. Here we take the supplied
parameters and construct a network of operations to apply them to an image.
Cropping
~~~~~~~~
Cropping is done by placing a bounding box at a random position in the full
image. The cropping parameter controls the size of that box relative to the
input image. If it's zero, then the box is the same size as the input and no
cropping is performed. If the value is 50%, then the crop box will be half the
width and height of the input. In a diagram it looks like this:
< width >
+---------------------+
| |
| width - crop% |
| < > |
| +------+ |
| | | |
| | | |
| | | |
| +------+ |
| |
| |
+---------------------+
Scaling
~~~~~~~
Scaling is a lot like cropping, except that the bounding box is always
centered and its size varies randomly within the given range. For example if
the scale percentage is zero, then the bounding box is the same size as the
input and no scaling is applied. If it's 50%, then the bounding box will be in
a random range between half the width and height and full size.
Args:
flip_left_right: Boolean whether to randomly mirror images horizontally.
random_crop: Integer percentage setting the total margin used around the
crop box.
random_scale: Integer percentage of how much to vary the scale by.
random_brightness: Integer range to randomly multiply the pixel values by.
graph.
Returns:
The jpeg input layer and the distorted result tensor.
"""
jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')
decoded_image = tf.image.decode_jpeg(jpeg_data, channels=MODEL_INPUT_DEPTH)
decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)
decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)
margin_scale = 1.0 + (random_crop / 100.0)
resize_scale = 1.0 + (random_scale / 100.0)
margin_scale_value = tf.constant(margin_scale)
resize_scale_value = tf.random_uniform(tensor_shape.scalar(),
minval=1.0,
maxval=resize_scale)
scale_value = tf.multiply(margin_scale_value, resize_scale_value)
precrop_width = tf.multiply(scale_value, MODEL_INPUT_WIDTH)
precrop_height = tf.multiply(scale_value, MODEL_INPUT_HEIGHT)
precrop_shape = tf.stack([precrop_height, precrop_width])
precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)
precropped_image = tf.image.resize_bilinear(decoded_image_4d,
precrop_shape_as_int)
precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])
cropped_image = tf.random_crop(precropped_image_3d,
[MODEL_INPUT_HEIGHT, MODEL_INPUT_WIDTH,
MODEL_INPUT_DEPTH])
if flip_left_right:
flipped_image = tf.image.random_flip_left_right(cropped_image)
else:
flipped_image = cropped_image
brightness_min = 1.0 - (random_brightness / 100.0)
brightness_max = 1.0 + (random_brightness / 100.0)
brightness_value = tf.random_uniform(tensor_shape.scalar(),
minval=brightness_min,
maxval=brightness_max)
brightened_image = tf.multiply(flipped_image, brightness_value)
distort_result = tf.expand_dims(brightened_image, 0, name='DistortResult')
return jpeg_data, distort_result
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor):
"""Adds a new softmax and fully-connected layer for training.
We need to retrain the top layer to identify our new classes, so this function
adds the right operations to the graph, along with some variables to hold the
weights, and then sets up all the gradients for the backward pass.
The set up for the softmax and fully-connected layers is based on:
https://tensorflow.org/versions/master/tutorials/mnist/beginners/index.html
Args:
class_count: Integer of how many categories of things we're trying to
recognize.
final_tensor_name: Name string for the new final node that produces results.
bottleneck_tensor: The output of the main CNN graph.
Returns:
The tensors for the training and cross entropy results, and tensors for the
bottleneck input and ground truth input.
"""
with tf.name_scope('input'):
bottleneck_input = tf.placeholder_with_default(
bottleneck_tensor, shape=[None, BOTTLENECK_TENSOR_SIZE],
name='BottleneckInputPlaceholder')
ground_truth_input = tf.placeholder(tf.float32,
[None, class_count],
name='GroundTruthInput')
# Organizing the following ops as `final_training_ops` so they're easier
# to see in TensorBoard
layer_name = 'final_training_ops'
with tf.name_scope(layer_name):
with tf.name_scope('weights'):
initial_value = tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, class_count],
stddev=0.001)
layer_weights = tf.Variable(initial_value, name='final_weights')
variable_summaries(layer_weights)
with tf.name_scope('biases'):
layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
variable_summaries(layer_biases)
with tf.name_scope('Wx_plus_b'):
logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
tf.summary.histogram('pre_activations', logits)
final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
tf.summary.histogram('activations', final_tensor)
with tf.name_scope('cross_entropy'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
labels=ground_truth_input, logits=logits)
with tf.name_scope('total'):
cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.summary.scalar('cross_entropy', cross_entropy_mean)
with tf.name_scope('train'):
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
train_step = optimizer.minimize(cross_entropy_mean)
return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
final_tensor)
def add_evaluation_step(result_tensor, ground_truth_tensor):
"""Inserts the operations we need to evaluate the accuracy of our results.
Args:
result_tensor: The new final node that produces results.
ground_truth_tensor: The node we feed ground truth data
into.
Returns:
Tuple of (evaluation step, prediction).
"""
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
prediction = tf.argmax(result_tensor, 1)
correct_prediction = tf.equal(
prediction, tf.argmax(ground_truth_tensor, 1))
with tf.name_scope('accuracy'):
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', evaluation_step)
return evaluation_step, prediction
def main(_):
# TensorBoard의 summaries를 write할 directory를 설정한다.
if tf.gfile.Exists(FLAGS.summaries_dir):
tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
tf.gfile.MakeDirs(FLAGS.summaries_dir)
# pre-trained graph를 생성한다.
maybe_download_and_extract()
graph, bottleneck_tensor, jpeg_data_tensor, resized_image_tensor = (
create_inception_graph())
# 폴더 구조를 살펴보고, 모든 이미지에 대한 lists를 생성한다.
image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
FLAGS.validation_percentage)
class_count = len(image_lists.keys())
if class_count == 0:
print('No valid folders of images found at ' + FLAGS.image_dir)
return -1
if class_count == 1:
print('Only one valid folder of images found at ' + FLAGS.image_dir +
' - multiple classes are needed for classification.')
return -1
# 커맨드라인 flag에 distortion에 관련된 설정이 있으면 distortion들을 적용한다.
do_distort_images = should_distort_images(
FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
FLAGS.random_brightness)
with tf.Session(graph=graph) as sess:
if do_distort_images:
# 우리는 distortion들을 적용할것이다. 따라서 필요한 연산들(operations)을 설정한다.
(distorted_jpeg_data_tensor,
distorted_image_tensor) = add_input_distortions(
FLAGS.flip_left_right, FLAGS.random_crop,
FLAGS.random_scale, FLAGS.random_brightness)
else:
# 우리는 계산된 'bottleneck' 이미지 summaries를 가지고 있다.
# 이를 disk에 캐싱(caching)할 것이다.
cache_bottlenecks(sess, image_lists, FLAGS.image_dir,
FLAGS.bottleneck_dir, jpeg_data_tensor,
bottleneck_tensor)
# 우리가 학습시킬(training) 새로운 layer를 추가한다.
(train_step, cross_entropy, bottleneck_input, ground_truth_input,
final_tensor) = add_final_training_ops(len(image_lists.keys()),
FLAGS.final_tensor_name,
bottleneck_tensor)
# 우리의 새로운 layer의 정확도를 평가(evalute)하기 위한 새로운 operation들을 생성한다.
evaluation_step, prediction = add_evaluation_step(
final_tensor, ground_truth_input)
# 모든 summaries를 합치고(merge) summaries_dir에 쓴다.(write)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
sess.graph)
validation_writer = tf.summary.FileWriter(
FLAGS.summaries_dir + '/validation')
# 우리의 모든 가중치들(weights)과 그들의 초기값들을 설정한다.
init = tf.global_variables_initializer()
sess.run(init)
# 커맨드 라인에서 지정한 횟수만큼 학습을 진행한다.
for i in range(FLAGS.how_many_training_steps):
# bottleneck 값들의 batch를 얻는다. 이는 매번 distortion을 적용하고 계산하거나,
# disk에 저장된 chache로부터 얻을 수 있다.
if do_distort_images:
(train_bottlenecks,
train_ground_truth) = get_random_distorted_bottlenecks(
sess, image_lists, FLAGS.train_batch_size, 'training',
FLAGS.image_dir, distorted_jpeg_data_tensor,
distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
else:
(train_bottlenecks,
train_ground_truth, _) = get_random_cached_bottlenecks(
sess, image_lists, FLAGS.train_batch_size, 'training',
FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
bottleneck_tensor)
# grpah에 bottleneck과 ground truth를 feed하고, training step을 진행한다.
# TensorBoard를 위한 'merged' op을 이용해서 training summaries을 capture한다.
train_summary, _ = sess.run(
[merged, train_step],
feed_dict={bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth})
train_writer.add_summary(train_summary, i)
# 일정 step마다 graph의 training이 얼마나 잘 되고 있는지 출력한다.
is_last_step = (i + 1 == FLAGS.how_many_training_steps)
if (i % FLAGS.eval_step_interval) == 0 or is_last_step:
train_accuracy, cross_entropy_value = sess.run(
[evaluation_step, cross_entropy],
feed_dict={bottleneck_input: train_bottlenecks,
ground_truth_input: train_ground_truth})
print('%s: Step %d: Train accuracy = %.1f%%' % (datetime.now(), i,
train_accuracy * 100))
print('%s: Step %d: Cross entropy = %f' % (datetime.now(), i,
cross_entropy_value))
validation_bottlenecks, validation_ground_truth, _ = (
get_random_cached_bottlenecks(
sess, image_lists, FLAGS.validation_batch_size, 'validation',
FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
bottleneck_tensor))
# validation step을 진행한다.
# TensorBoard를 위한 'merged' op을 이용해서 training summaries을 capture한다.
validation_summary, validation_accuracy = sess.run(
[merged, evaluation_step],
feed_dict={bottleneck_input: validation_bottlenecks,
ground_truth_input: validation_ground_truth})
validation_writer.add_summary(validation_summary, i)
print('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %
(datetime.now(), i, validation_accuracy * 100,
len(validation_bottlenecks)))
# 트레이닝 과정이 모두 끝났다.
# 따라서 이전에 보지 못했던 이미지를 통해 마지막 test 평가(evalution)을 진행한다.
test_bottlenecks, test_ground_truth, test_filenames = (
get_random_cached_bottlenecks(sess, image_lists, FLAGS.test_batch_size,
'testing', FLAGS.bottleneck_dir,
FLAGS.image_dir, jpeg_data_tensor,
bottleneck_tensor))
test_accuracy, predictions = sess.run(
[evaluation_step, prediction],
feed_dict={bottleneck_input: test_bottlenecks,
ground_truth_input: test_ground_truth})
print('Final test accuracy = %.1f%% (N=%d)' % (
test_accuracy * 100, len(test_bottlenecks)))
if FLAGS.print_misclassified_test_images:
print('=== MISCLASSIFIED TEST IMAGES ===')
for i, test_filename in enumerate(test_filenames):
if predictions[i] != test_ground_truth[i].argmax():
print('%70s %s' % (test_filename,
list(image_lists.keys())[predictions[i]]))
# 학습된 graph와 weights들을 포함한 labels를 쓴다.(write)
output_graph_def = graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), [FLAGS.final_tensor_name])
with gfile.FastGFile(FLAGS.output_graph, 'wb') as f:
f.write(output_graph_def.SerializeToString())
with gfile.FastGFile(FLAGS.output_labels, 'w') as f:
f.write('\n'.join(image_lists.keys()) + '\n')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--image_dir',
type=str,
default='',
help='./image'
)
parser.add_argument(
'--output_graph',
type=str,
default='./tmp/output_graph.pb',
help='Where to save the trained graph.'
)
parser.add_argument(
'--output_labels',
type=str,
default='./tmp/output_labels.txt',
help='Where to save the trained graph\'s labels.'
)
parser.add_argument(
'--summaries_dir',
type=str,
default='./tmp/retrain_logs',
help='Where to save summary logs for TensorBoard.'
)
parser.add_argument(
'--how_many_training_steps',
type=int,
default=1000,
help='How many training steps to run before ending.'
)
parser.add_argument(
'--learning_rate',
type=float,
default=0.01,
help='How large a learning rate to use when training.'
)
parser.add_argument(
'--testing_percentage',
type=int,
default=10,
help='What percentage of images to use as a test set.'
)
parser.add_argument(
'--validation_percentage',
type=int,
default=10,
help='What percentage of images to use as a validation set.'
)
parser.add_argument(
'--eval_step_interval',
type=int,
default=10,
help='How often to evaluate the training results.'
)
parser.add_argument(
'--train_batch_size',
type=int,
default=100,
help='How many images to train on at a time.'
)
parser.add_argument(
'--test_batch_size',
type=int,
default=-1,
help="""\
How many images to test on. This test set is only used once, to evaluate
the final accuracy of the model after training completes.
A value of -1 causes the entire test set to be used, which leads to more
stable results across runs.\
"""
)
parser.add_argument(
'--validation_batch_size',
type=int,
default=100,
help="""\
How many images to use in an evaluation batch. This validation set is
used much more often than the test set, and is an early indicator of how
accurate the model is during training.
A value of -1 causes the entire validation set to be used, which leads to
more stable results across training iterations, but may be slower on large
training sets.\
"""
)
parser.add_argument(
'--print_misclassified_test_images',
default=False,
help="""\
Whether to print out a list of all misclassified test images.\
""",
action='store_true'
)
parser.add_argument(
'--model_dir',
type=str,
default='./tmp/imagenet',
help="""\
Path to classify_image_graph_def.pb,
imagenet_synset_to_human_label_map.txt, and
imagenet_2012_challenge_label_map_proto.pbtxt.\
"""
)
parser.add_argument(
'--bottleneck_dir',
type=str,
default='./tmp/bottleneck',
help='Path to cache bottleneck layer values as files.'
)
parser.add_argument(
'--final_tensor_name',
type=str,
default='final_result',
help="""\
The name of the output classification layer in the retrained graph.\
"""
)
parser.add_argument(
'--flip_left_right',
default=False,
help="""\
Whether to randomly flip half of the training images horizontally.\
""",
action='store_true'
)
parser.add_argument(
'--random_crop',
type=int,
default=0,
help="""\
A percentage determining how much of a margin to randomly crop off the
training images.\
"""
)
parser.add_argument(
'--random_scale',