-
Notifications
You must be signed in to change notification settings - Fork 20
/
gen_softnn.py
31 lines (26 loc) · 1.21 KB
/
gen_softnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from GEN import GEN
class GENSoftNN(GEN):
def __init__(self, **kwargs):
super(GENSoftNN, self).__init__(**kwargs)
self.repr_fn_log_strength = torch.nn.Parameter(torch.zeros(1))
def repr_fn(self, node_pos, x_inp, **kwargs):
return self.compute_coordinates_soft_nn(node_pos, x_inp, **kwargs)
def set_repr_fn_log_strength(self, log_strength):
self.repr_fn_log_strength = log_strength
def compute_coordinates_soft_nn(self, node_pos, x, log_strength=None):
if log_strength is None: log_strength = self.repr_fn_log_strength
assert log_strength is not None
#Take out batch dimension
bs = 1 if len(x.shape) == 2 else x.shape[0]
inps_per_elt, features = x.shape[-2], x.shape[-1]
pos = x.reshape(-1,features)[:,:2]
#Compute pseudo-Squared Error distance
#Using (x-y)^2 = x^2-2xy+y^2 \equivalent (y ctt) x^2-2xy
pseudo_dist = (
torch.norm(node_pos, dim=1)**2 - 2*torch.mm(pos, node_pos.t()))
scores = (F.softmax(-torch.exp(log_strength)*pseudo_dist, dim=1))
return scores.reshape((bs, inps_per_elt, -1))