forked from OpenLMLab/MOSS-RLHF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
70 lines (59 loc) · 5.03 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
def parse_args():
parser = argparse.ArgumentParser(description='MOSS-RLHF @Fudan NLP Group')
# Path
parser.add_argument('--model_save_path', type=str, default='', help='checkpoint path, used for save model and training')
parser.add_argument('--policy_model_path', type=str, default='', help='policy model and reference model path')
parser.add_argument('--critic_model_path', type=str, default='', help='critic model and reward model path')
parser.add_argument('--tokenizer_name_or_path', type=str, default='/huggingface_models/open-chinese-llama-7b', help='tokenizer name or path')
parser.add_argument('--data_path', type=str, default='./data', help='dataset for training and validation')
parser.add_argument('--logdir', type=str, default=None, help='path to save tensorboard logs')
# Training
parser.add_argument('--lr', type=float, default=5e-7, help='learning rate of policy model')
parser.add_argument('--critic_lr', type=float, default=15e-7, help='learning rate of critic model')
parser.add_argument('--seed', type=int, default=42, help='seed')
parser.add_argument('--batch_size', type=int, default=32, help='training batch size, *NOT* for sampling from env')
parser.add_argument('--train_steps', type=int, default=5000, help='train steps')
parser.add_argument('--warmup_steps', type=int, default=500, help='warmup steps')
parser.add_argument('--save_per_step', type=int, default=100, help='save ckpt per steps')
parser.add_argument('--beta1', type=float, default=0.9, help='adam')
parser.add_argument('--beta2', type=float, default=0.95, help='adam')
parser.add_argument('--eps', type=float, default=1e-6, help='optimizer')
parser.add_argument('--num_workers', type=int, default=1, help='dataloader')
parser.add_argument('--num_prefetch', type=int, default=32, help='dataloader')
parser.add_argument('--maxlen_prompt', type=int, default=2048, help='max len for training, including model prompt and response')
parser.add_argument('--gradient_checkpoint', action='store_true', help='deepspeed')
# PPO in LLMs
parser.add_argument('--num_rollouts', type=int, default=128, help='nums of samples in current replay buffer')
parser.add_argument('--rollout_batch_size', type=int, default=32, help='batch size of sampling from env')
parser.add_argument('--ppo_pretrain_data_path', type=str, default='', help='dataset folder path for pertrain loss of step3: rlhf')
parser.add_argument('--ppo_pretrain_data_type', type=str, default='sft', choices=['sft', 'pretrain'], help='dataset folder path for pertrain loss of step3: rlhf')
parser.add_argument('--ppo_pretrain_batch_size_ratio', type=int, default=1, help='ppo batch size ratio')
parser.add_argument('--ppo_pretrain_loss_weight', type=float, default=0., help='add pretrain loss in PPO training: ppo-rtx')
parser.add_argument('--kl_penalty_weight', type=float, default=0.02, help='kl penalty')
parser.add_argument('--advantage_clip', type=float, default=0.5, help='clip advantage')
parser.add_argument('--vf_loss_weight', type=float, default=1., help='vf loss weight')
parser.add_argument('--entropy_loss_weight', type=float, default=0., help='entropy loss weight')
parser.add_argument('--reward_clip', type=float, default=10., help='reward clip')
parser.add_argument('--entropy_clip', type=float, default=35., help='entropy loss clip')
parser.add_argument('--pg_clip', type=float, default=0.2, help='pg loss clip')
parser.add_argument('--value_clip', type=float, default=0.2, help='value clip for critic model')
parser.add_argument('--gamma', type=float, default=1., help='GAE in PPO')
parser.add_argument('--lam', type=float, default=0.95, help='GAE in PPO')
# Trick and method options for PPO
parser.add_argument('--use_reward_clip', action='store_true', help='use reward clip')
parser.add_argument('--use_reward_scaling', action='store_true', help='use reward scaling')
parser.add_argument('--use_reward_norm', action='store_true', help='user reward norm')
parser.add_argument('--use_critic_loss_clip', action='store_true', help='use critic loss clip')
parser.add_argument('--use_policy_loss_clip', action='store_true', help='use policy loss clip')
parser.add_argument('--use_advantage_norm', action='store_true', help='use advantage norm')
parser.add_argument('--use_advantage_clip', action='store_true', help='use advantage clip')
parser.add_argument('--use_ppo_pretrain_loss', action='store_true', help='use ppo pretrain loss')
parser.add_argument('--use_entropy_loss', action='store_true', help='use ppo entropy loss')
# Sample from env
parser.add_argument('--maxlen_res', type=int, default=128, help='max len for model response')
parser.add_argument('--temperature', type=float, default=0.8, help='temperature')
parser.add_argument('--repetition_penalty', type=float, default=1.1, help='repetition penalty')
parser.add_argument('--topp', type=float, default=0.9, help='nucleus sampling')
opt = parser.parse_args()
return opt