-
Notifications
You must be signed in to change notification settings - Fork 356
/
train_RFB.py
257 lines (222 loc) · 9.22 KB
/
train_RFB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from __future__ import print_function
import sys
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torch.nn.init as init
import argparse
import numpy as np
from torch.autograd import Variable
import torch.utils.data as data
from data import VOCroot, COCOroot, VOC_300, VOC_512, COCO_300, COCO_512, COCO_mobile_300, AnnotationTransform, COCODetection, VOCDetection, detection_collate, BaseTransform, preproc
from layers.modules import MultiBoxLoss
from layers.functions import PriorBox
import time
parser = argparse.ArgumentParser(
description='Receptive Field Block Net Training')
parser.add_argument('-v', '--version', default='RFB_vgg',
help='RFB_vgg ,RFB_E_vgg or RFB_mobile version.')
parser.add_argument('-s', '--size', default='300',
help='300 or 512 input size.')
parser.add_argument('-d', '--dataset', default='VOC',
help='VOC or COCO dataset')
parser.add_argument(
'--basenet', default='./weights/vgg16_reducedfc.pth', help='pretrained base model')
parser.add_argument('--jaccard_threshold', default=0.5,
type=float, help='Min Jaccard index for matching')
parser.add_argument('-b', '--batch_size', default=32,
type=int, help='Batch size for training')
parser.add_argument('--num_workers', default=8,
type=int, help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True,
type=bool, help='Use cuda to train model')
parser.add_argument('--ngpu', default=1, type=int, help='gpus')
parser.add_argument('--lr', '--learning-rate',
default=4e-3, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument(
'--resume_net', default=None, help='resume net for retraining')
parser.add_argument('--resume_epoch', default=0,
type=int, help='resume iter for retraining')
parser.add_argument('-max','--max_epoch', default=300,
type=int, help='max epoch for retraining')
parser.add_argument('--weight_decay', default=5e-4,
type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1,
type=float, help='Gamma update for SGD')
parser.add_argument('--log_iters', default=True,
type=bool, help='Print the loss at each iteration')
parser.add_argument('--save_folder', default='./weights/',
help='Location to save checkpoint models')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
if args.dataset == 'VOC':
train_sets = [('2007', 'trainval'), ('2012', 'trainval')]
cfg = (VOC_300, VOC_512)[args.size == '512']
else:
train_sets = [('2014', 'train'),('2014', 'valminusminival')]
cfg = (COCO_300, COCO_512)[args.size == '512']
if args.version == 'RFB_vgg':
from models.RFB_Net_vgg import build_net
elif args.version == 'RFB_E_vgg':
from models.RFB_Net_E_vgg import build_net
elif args.version == 'RFB_mobile':
from models.RFB_Net_mobile import build_net
cfg = COCO_mobile_300
else:
print('Unkown version!')
img_dim = (300,512)[args.size=='512']
rgb_means = ((104, 117, 123),(103.94,116.78,123.68))[args.version == 'RFB_mobile']
p = (0.6,0.2)[args.version == 'RFB_mobile']
num_classes = (21, 81)[args.dataset == 'COCO']
batch_size = args.batch_size
weight_decay = 0.0005
gamma = 0.1
momentum = 0.9
net = build_net('train', img_dim, num_classes)
print(net)
if args.resume_net == None:
base_weights = torch.load(args.basenet)
print('Loading base network...')
net.base.load_state_dict(base_weights)
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
for key in m.state_dict():
if key.split('.')[-1] == 'weight':
if 'conv' in key:
init.kaiming_normal_(m.state_dict()[key], mode='fan_out')
if 'bn' in key:
m.state_dict()[key][...] = 1
elif key.split('.')[-1] == 'bias':
m.state_dict()[key][...] = 0
print('Initializing weights...')
# initialize newly added layers' weights with kaiming_normal method
net.extras.apply(weights_init)
net.loc.apply(weights_init)
net.conf.apply(weights_init)
net.Norm.apply(weights_init)
if args.version == 'RFB_E_vgg':
net.reduce.apply(weights_init)
net.up_reduce.apply(weights_init)
else:
# load resume network
print('Loading resume network...')
state_dict = torch.load(args.resume_net)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
if args.ngpu > 1:
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
if args.cuda:
net.cuda()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
#optimizer = optim.RMSprop(net.parameters(), lr=args.lr,alpha = 0.9, eps=1e-08,
# momentum=args.momentum, weight_decay=args.weight_decay)
criterion = MultiBoxLoss(num_classes, 0.5, True, 0, True, 3, 0.5, False)
priorbox = PriorBox(cfg)
with torch.no_grad():
priors = priorbox.forward()
if args.cuda:
priors = priors.cuda()
def train():
net.train()
# loss counters
loc_loss = 0 # epoch
conf_loss = 0
epoch = 0 + args.resume_epoch
print('Loading Dataset...')
if args.dataset == 'VOC':
dataset = VOCDetection(VOCroot, train_sets, preproc(
img_dim, rgb_means, p), AnnotationTransform())
elif args.dataset == 'COCO':
dataset = COCODetection(COCOroot, train_sets, preproc(
img_dim, rgb_means, p))
else:
print('Only VOC and COCO are supported now!')
return
epoch_size = len(dataset) // args.batch_size
max_iter = args.max_epoch * epoch_size
stepvalues_VOC = (150 * epoch_size, 200 * epoch_size, 250 * epoch_size)
stepvalues_COCO = (90 * epoch_size, 120 * epoch_size, 140 * epoch_size)
stepvalues = (stepvalues_VOC,stepvalues_COCO)[args.dataset=='COCO']
print('Training',args.version, 'on', dataset.name)
step_index = 0
if args.resume_epoch > 0:
start_iter = args.resume_epoch * epoch_size
else:
start_iter = 0
lr = args.lr
for iteration in range(start_iter, max_iter):
if iteration % epoch_size == 0:
# create batch iterator
batch_iterator = iter(data.DataLoader(dataset, batch_size,
shuffle=True, num_workers=args.num_workers, collate_fn=detection_collate))
loc_loss = 0
conf_loss = 0
if (epoch % 10 == 0 and epoch > 0) or (epoch % 5 ==0 and epoch > 200):
torch.save(net.state_dict(), args.save_folder+args.version+'_'+args.dataset + '_epoches_'+
repr(epoch) + '.pth')
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index += 1
lr = adjust_learning_rate(optimizer, args.gamma, epoch, step_index, iteration, epoch_size)
# load train data
images, targets = next(batch_iterator)
#print(np.sum([torch.sum(anno[:,-1] == 2) for anno in targets]))
if args.cuda:
images = Variable(images.cuda())
targets = [Variable(anno.cuda()) for anno in targets]
else:
images = Variable(images)
targets = [Variable(anno) for anno in targets]
# forward
t0 = time.time()
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(out, priors, targets)
loss = loss_l + loss_c
loss.backward()
optimizer.step()
t1 = time.time()
loc_loss += loss_l.item()
conf_loss += loss_c.item()
load_t1 = time.time()
if iteration % 10 == 0:
print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Totel iter ' +
repr(iteration) + ' || L: %.4f C: %.4f||' % (
loss_l.item(),loss_c.item()) +
'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))
torch.save(net.state_dict(), args.save_folder +
'Final_' + args.version +'_' + args.dataset+ '.pth')
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < 6:
lr = 1e-6 + (args.lr-1e-6) * iteration / (epoch_size * 5)
else:
lr = args.lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()