-
Notifications
You must be signed in to change notification settings - Fork 16
/
FEC.py
236 lines (187 loc) · 11 KB
/
FEC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import pandas as pd
import numpy as np
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Convolution2D
from keras.layers import Flatten, Dense, Dropout,BatchNormalization, Activation, Lambda
from keras.regularizers import l2
from keras.layers import Input, Concatenate, concatenate
import keras.backend as K
import tensorflow as tf
from keras.models import Model,load_model
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import plot_model,np_utils
from keras import regularizers
import cv2
DATA_FORMAT='channels_last' # Theano:'channels_first' Tensorflow:'channels_last'
WEIGHT_DECAY=0.0005
LRN2D_NORM=False
USE_BN=True
IM_WIDTH=224
IM_HEIGHT=224
batch_num = 16
#normalization
def conv2D_lrn2d(x,filters,kernel_size,strides=(1,1),padding='same',data_format=DATA_FORMAT,dilation_rate=(1,1),activation='relu',use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None,lrn2d_norm=LRN2D_NORM,weight_decay=WEIGHT_DECAY,name=None):
#l2 normalization
if weight_decay:
kernel_regularizer=regularizers.l2(weight_decay)
bias_regularizer=regularizers.l2(weight_decay)
else:
kernel_regularizer=None
bias_regularizer=None
x=Conv2D(filters=filters,kernel_size=kernel_size,strides=strides,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint,name=name)(x)
if lrn2d_norm:
#batch normalization
x=BatchNormalization()(x)
return x
def inception_module(x,params,concat_axis,padding='same',data_format=DATA_FORMAT,dilation_rate=(1,1),activation='relu',use_bias=True,kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None,weight_decay=None):
(branch1,branch2,branch3,branch4)=params
if weight_decay:
kernel_regularizer=regularizers.l2(weight_decay)
bias_regularizer=regularizers.l2(weight_decay)
else:
kernel_regularizer=None
bias_regularizer=None
#1x1
if branch1[1]>0:
pathway1=Conv2D(filters=branch1[1],kernel_size=(1,1),strides=branch1[0],padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(x)
#1x1->3x3
pathway2=Conv2D(filters=branch2[0],kernel_size=(1,1),strides=1,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(x)
pathway2=Conv2D(filters=branch2[1],kernel_size=(3,3),strides=branch1[0],padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(pathway2)
#1x1->5x5
pathway3=Conv2D(filters=branch3[0],kernel_size=(1,1),strides=1,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(x)
pathway3=Conv2D(filters=branch3[1],kernel_size=(5,5),strides=branch1[0],padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(pathway3)
#3x3->1x1
pathway4=MaxPooling2D(pool_size=(3,3),strides=branch1[0],padding=padding,data_format=DATA_FORMAT)(x)
if branch4[0]>0:
pathway4=Conv2D(filters=branch4[0],kernel_size=(1,1),strides=1,padding=padding,data_format=data_format,dilation_rate=dilation_rate,activation=activation,use_bias=use_bias,kernel_initializer=kernel_initializer,bias_initializer=bias_initializer,kernel_regularizer=kernel_regularizer,bias_regularizer=bias_regularizer,activity_regularizer=activity_regularizer,kernel_constraint=kernel_constraint,bias_constraint=bias_constraint)(pathway4)
if branch1[1]>0:
return concatenate([pathway1,pathway2,pathway3,pathway4],axis=concat_axis)
else:
return concatenate([pathway2, pathway3, pathway4], axis=concat_axis)
def conv_block(input, nb_filter, dropout_rate=None, weight_decay=1E-4):
x = Activation('relu')(input)
x = Convolution2D(nb_filter, (3, 3), kernel_initializer="he_uniform", padding="same", use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
if dropout_rate is not None:
x = Dropout(dropout_rate)(x)
return x
def dense_block(x, nb_layers, nb_filter, growth_rate, dropout_rate=None, weight_decay=1E-4):
concat_axis = 1 if K.image_dim_ordering() == "th" else -1
feature_list = [x]
for i in range(nb_layers):
x = conv_block(x, growth_rate, dropout_rate, weight_decay)
feature_list.append(x)
x = Concatenate(axis=concat_axis)(feature_list)
nb_filter += growth_rate
return x, nb_filter
def l2_norm(x):
x = x ** 2
x = K.sum(x, axis=1)
x = K.sqrt(x)
return x
def triplet_loss(y_true, y_pred):
batch = batch_num
ref1 = y_pred[0:batch,:]
pos1 = y_pred[batch:batch+batch,:]
neg1 = y_pred[batch+batch:3*batch,:]
dis_pos = K.sum(K.square(ref1 - pos1), axis=1, keepdims=True)
dis_neg = K.sum(K.square(ref1 - neg1), axis=1, keepdims=True)
dis_pneg = K.sum(K.square(pos1 - neg1), axis=1, keepdims=True)
#dis_pos = K.sqrt(dis_pos)
#dis_neg = K.sqrt(dis_neg)
a1pha = 0.2
d1 = K.maximum(0.0,(dis_pos-dis_neg)+a1pha)
d2 = K.maximum(0.0,(dis_pos-dis_pneg)+a1pha)
d = d1+d2
return K.mean(d)
def create_model():
#Data format:tensorflow,channels_last;theano,channels_last
if DATA_FORMAT=='channels_first':
INP_SHAPE=(3,224,224)
img_input=Input(shape=INP_SHAPE)
CONCAT_AXIS=1
elif DATA_FORMAT=='channels_last':
INP_SHAPE=(224,224,3)
img_input=Input(shape=INP_SHAPE)
CONCAT_AXIS=3
else:
raise Exception('Invalid Dim Ordering')
x=conv2D_lrn2d(img_input,64,(7,7),2,padding='same',lrn2d_norm=False,name="FaceNet_NN2_conv2D")
x=MaxPooling2D(pool_size=(3,3),strides=2,padding='same',data_format=DATA_FORMAT)(x)
x=BatchNormalization()(x)
x=conv2D_lrn2d(x,64,(1,1),1,padding='same',lrn2d_norm=False)
x=conv2D_lrn2d(x,192,(3,3),1,padding='same',lrn2d_norm=True)
x=MaxPooling2D(pool_size=(3,3),strides=2,padding='same',data_format=DATA_FORMAT)(x)
x=inception_module(x,params=[(1,64),(96,128),(16,32),(32,)],concat_axis=CONCAT_AXIS) #3a
x=inception_module(x,params=[(1,64),(96,128),(32,64),(64,)],concat_axis=CONCAT_AXIS) #3b
#x=MaxPooling2D(pool_size=(3,3),strides=2,padding='same',data_format=DATA_FORMAT)(x)
x = inception_module(x, params=[(2,0), (128, 256), (32, 64), (0,)], concat_axis=CONCAT_AXIS) # 3c
x=inception_module(x,params=[(1,256),(96,192),(32,42),(128,)],concat_axis=CONCAT_AXIS) #4a
x=inception_module(x,params=[(1,224),(112,224),(32,64),(128,)],concat_axis=CONCAT_AXIS) #4b
x=inception_module(x,params=[(1,192),(128,256),(32,64),(128,)],concat_axis=CONCAT_AXIS) #4c
x=inception_module(x,params=[(1,160),(144,288),(32,64),(128,)],concat_axis=CONCAT_AXIS) #4d
x=inception_module(x,params=[(2,0),(160,256),(64,128),(0,)],concat_axis=CONCAT_AXIS) #4e
#x=MaxPooling2D(pool_size=(1,1),strides=1,padding='same',data_format=DATA_FORMAT,name="EndOfNN2")(x)
x = Convolution2D(512, (1, 1), kernel_initializer="he_uniform", padding="same", name="DenseNet_initial_conv2D", use_bias=False,
kernel_regularizer=l2(WEIGHT_DECAY))(x)
x = BatchNormalization()(x)
x, nb_filter = dense_block(x, 5, 512, growth_rate=64,dropout_rate=0.5)
x = AveragePooling2D(pool_size=(7, 7), strides=1, padding='valid', data_format=DATA_FORMAT)(x)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(16)(x)
#x = K.l2_normalize(x)
x = Lambda(lambda x: K.l2_normalize(x))(x)
return x, img_input
def load_triplet_images(csvpath,target_size):
data = pd.read_csv(csvpath,error_bad_lines=False)
trainX = []
print(data)
trainX1 = []
trainX2 = []
trainX3 = []
for i in range(0,int(target_size/3)):
mode = data.iloc[i, 5]
#print(mode)
img1 = cv2.imread(data.iloc[i, 1])
img2 = cv2.imread(data.iloc[i, 2])
img3 = cv2.imread(data.iloc[i, 3])
#print(img1)
if img1 is None or img2 is None or img3 is None:
continue
if mode == 1:
trainX1.append(np.array(img2))
trainX2.append(np.array(img3))
trainX3.append(np.array(img1))
elif mode == 2:
trainX1.append(np.array(img3))
trainX2.append(np.array(img1))
trainX3.append(np.array(img2))
elif mode == 3:
trainX1.append(np.array(img1))
trainX2.append(np.array(img2))
trainX3.append(np.array(img3))
#print(len(trainX1))
if len(trainX1) == batch_num:
#print("Add")
trainX.extend(trainX1)
trainX.extend(trainX2)
trainX.extend(trainX3)
trainX1 = []
trainX2 = []
trainX3 = []
Xtrain = np.array(trainX)
Xtrain = Xtrain.reshape(Xtrain.shape[0], 224, 224, 3)
print(Xtrain.shape)
Ytrain = np.zeros(shape=(Xtrain.shape[0],1,1,1))
return Xtrain,Ytrain
if __name__=='__main__':
train_x,train_y = load_triplet_images('labels.csv',43200)
x, img_input = create_model()
model = Model(inputs=img_input,outputs=[x])
model.summary()
from keras.optimizers import Adam
model.compile(loss=triplet_loss, optimizer=Adam(lr=0.0005))# Follow the original paper
#In original paper, they train 50K iterations
model.fit(x=train_x, y=train_y, nb_epoch=50, batch_size=batch_num*3,shuffle=False)
model.save("FECNet1.h5")