
1
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture Principles
and Practices

V13.0

2
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture Principles

and Practices

3
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

• Copyright 2018 Carnegie Mellon University. All Rights Reserved.

• This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

• The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

• NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

• [DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

• This material is distributed by the Software Engineering Institute (SEI) only to course attendees for
their own individual study.

• Except for any U.S. government purposes described herein, this material SHALL NOT be reproduced
or used in any other manner without requesting formal permission from the Software Engineering
Institute at permission@sei.cmu.edu.

• Although the rights granted by contract do not require course attendance to use this material for
U.S. Government purposes, the SEI recommends attendance to ensure proper understanding.

• Architecture Tradeoff Analysis Method®, ATAM® and Carnegie Mellon® are registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.

• DM18-0138

4
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

Course Introduction

5
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Introductions

Instructor introductions

Participant introductions

• name

• company/position

• background

• course expectations

Course Introduction

6
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Course Objectives

The Software Architecture: Principles and Practices

course is a two-day course designed to

• familiarize participants with software architecture

concepts and principles

• introduce participants to the relevance and

role of software architectures and their impact on

an organization

• provide participants with examples of software

architectures in practice through case studies

Course Introduction

7
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Course-Entry Criteria

This course is designed for

• professionals who design and develop software or software-intensive systems

• acquisition professionals procuring software-intensive systems

• professionals who manage the development of software or software-intensive systems

Participants should have an understanding of

• the software development lifecycle

• modern software engineering concepts

Course Introduction

8
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Course Outcomes

Participants will have a better understanding of

• the relationships between system quality attributes and software architectures

• software architecture patterns and tactics, and their relationship to system quality

attributes

• software architecture artifacts and documentation

• software architecture design

• software architecture evaluation

• architectural reuse

• how architecture practices relate to Agile practices

Course Introduction

9
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Course Strategy

Lectures will be used to introduce concepts.

Case studies will be used to illustrate architectural principles in practice.

Discussion sessions and group exercises will be used to engage students.

Course Introduction

10
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Course Agenda – 1

Day 1 sessions

• Introduction

• What Is Software Architecture?

• The Architecture Influence Cycle

• Case Study: The World Wide Web

• Understanding Quality Attributes

• Achieving Quality Attributes (Part 1)

Course Introduction

11
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Course Agenda – 2

Day 2 sessions

• Achieving Quality Attributes (Part 2)

• Documenting Software Architecture

• Architecture Evaluation

• Architectures in Agile Projects

• Final Thoughts

Course Introduction

12
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Rules of Engagement

We will be very busy over the next two days. To complete everything and get the most

from the course, we will need to follow some rules of engagement:

• Your participation is essential.

• Feel free to ask questions at any time.

• Discussion is good, but we might need to cut some discussions short in the interest of

time.

• Please try to limit side discussions during the lectures.

• Please turn off your cell phone ringers and computers.

• Let’s try to start on time.

• Participants must be present for all sessions in order to earn a course completion

certificate.

Course Introduction

13
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Any Questions So Far?
Course Introduction

14
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

WHAT IS SOFTWARE

ARCHITECTURE?

15
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

After this module, students will understand

• what the term software architecture means

• the role and importance of software architecture in an

organization

• how a software architecture comprises many different

software structures

What is Software Architecture?

16
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Are Your Thoughts?

Apply your experience and background to define the following:

• enterprise architecture

• system architecture

• software architecture

What is Software Architecture?

17
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Enterprise Architectures

Enterprise architecture is a term commonly used in business today, but what does it

really mean?

Enterprise architecture is a means for describing business structures and the processes

that connect them.1

• It describes the flow of information and activities between various groups within the

enterprise that accomplish some overall business activity.

• Enterprise architectures may or may not be supported by computer systems.

• Software and its design are not typically addressed explicitly in an enterprise

architecture.

What is Software Architecture?

1 Zachman, John A. “A Framework for Information Systems Architecture.” IBM Systems
Journal 26, 3 (1987): 276–292.

18
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

System Architecture

A system architecture is a means for describing the elements and interactions of a

complete system including its hardware and software elements.

System architecture is concerned with the elements of the system and their contribution

toward the system’s goal but not with their substructure.

What is Software Architecture?

19
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Where Does Software Architecture Fit?

Enterprise architecture and system architecture provide an environment in which

software lives.

• Both provide requirements and constraints to which software architecture must adhere.

• Elements of both are likely to contain software architecture.

What is Software Architecture?

20
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Typical Software Architecture – 1

A software architecture is often depicted using an ad hoc box-and-line drawing of the

system that is intended to solve the problems articulated by the specification.

• Boxes show elements or “parts” of the system.

• Lines show relationships among the parts.

What is Software Architecture?

21
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Typical Software Architecture – 2
What is Software Architecture?

22
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Can We Tell from This Picture?

The system consists of many elements?

The elements interact with each other over various networks?

Some elements represent layers and their relationships to one another?

The applications involved and the elements they comprise?

The system has multiple tiers?

The data, control, and communication mechanisms that are used?

What is Software Architecture?

23
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Does This Picture Omit? – 1

What is the nature of the elements?

• What is the significance of their separation?

• Do they exist at runtime?

• Do they run at separate times?

• Are they processes, programs, or hardware?

• Are they objects, tasks, functions, or processes?

• Are they distributed programs or systems?

What are the responsibilities of the elements?

• What do they do?

• What functions do they provide in the context of the system?

24
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Does This Picture Omit? – 2

What is the significance of the connections between the elements?

Do the elements

• communicate with each other?

• control each other?

• send data to each other?

• use each other?

• invoke each other?

• synchronize with each other?

What is the significance of how the elements are positioned on

the diagram?

• For example, does ShopKwik use, call, control, and/or contain Personalization

Services, Reporting Services, and Order Management Services?

What is Software Architecture?

25
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Is a Software Architecture?

“The software architecture of a system is the set of structures needed to

reason about the system, which comprise software elements, relations

among them, and properties of both.”1

1 Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Third Edition.

Boston, MA: Addison-Wesley, 2012.

What is Software Architecture?

26
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implications of Our Definition – 1

A software architecture is an abstraction of a system. The architecture

• defines elements and how they relate to one another

• suppresses details of what the elements do internally and purely local

information about them; internal details are not architectural

- The internal details of the elements do not affect how the elements are used or how

they relate to or interact with other elements.

What is Software Architecture?

27
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implications of Our Definition – 2

The term “properties” refers to those assumptions that one element can

make about another element such as

• which services it provides

• how it performs

• how it handles faults

• how it uses shared resources

Elements interact with each other via interfaces that partition details into

public and private parts.

Architecture is concerned with the public side of this division.

What is Software Architecture?

28
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implications of Our Definition – 3

Systems can and do have many structures.

• No single structure can be the architecture.

• The set of candidate structures is not fixed or prescribed.

• Relationships and elements might be runtime related such as

- “sends data to,” “invokes,” or “signals”

- processes or tasks

• Relationships and elements might be nonruntime related such as

- “is a submodule of,” “inherits from,” or “is allocated to team X for implementation”

- a class or library

What is Software Architecture?

29
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implications of Our Definition – 4

Every system has an architecture.

• Every system is composed of elements, and there are relationships among them.

• In the simplest case, a system is composed of a single element, related only

to itself.

Just having an architecture is different from having an architecture that is known

to everyone:

• Is the “real” architecture the same as the specification?

• What is the rationale for architectural decisions?

If you don’t explicitly develop an architecture, you will get one anyway—and you

might not like what you get!

What is Software Architecture?

30
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implications of Our Definition – 5

Box-and-line drawings alone are not architectures: they are just a starting point.

• You might imagine the behavior of a box or element labeled “database”

or “executive.”

• You need to add specifications and properties to the elements

and relationships.

Finally, the definition of architecture is indifferent as to whether the architecture of

a system is a good one or a bad one.

• A good architecture is one that allows a system to meet its functional, quality

attribute, and lifecycle requirements.

What is Software Architecture?

31
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architects are likely to encounter the following terms:

• architectural patterns

• reference models

• reference architectures

But what exactly are they, and how do they relate to

software architecture?

Patterns, Reference Models, and Reference
Architectures – 1

What is Software Architecture?

32
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns, Reference Models, and Reference
Architectures – 2

An architectural pattern is a description of element and relationship types and a set of

constraints on how they are used.

• Patterns define families of architectures such as client-server, pipe-and-filter, and so

forth.

• Patterns exhibit known quality attribute properties.

• The selection of an architectural pattern is often the architect’s first major design

choice.

• The term architectural style has also been widely used to describe architectural

patterns.

What is Software Architecture?

33
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns, Reference Models, and Reference
Architectures – 3

A reference model is a division of functionality into elements and the data flow between

them.

• Reference models include databases and compilers, among other things.

• For example, the elements of a compiler are well known:

- parser

- lexical analyzer

- code generator

- optimizer

...and so forth

• Data flow and connectivity between these pieces are well established.

What is Software Architecture?

34
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns, Reference Models, and Reference
Architectures – 4

A reference architecture is a reference model that is mapped onto the software

elements that implement the functionality defined in the model.

• Mapping does not have to be one to one.

• Software elements might implement one function, parts of a single function, or

many functions.

• Templates, standards, and tools speed up development and help implementers

adhere to the constraints prescribed by the reference architecture.

What is Software Architecture?

35
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns, Reference Models, and Reference
Architectures – 5

Architectural patterns, reference models, and reference architectures are

not architectures; instead, they provide well-known solutions to various

design problems that we can tailor and incorporate into our architectures.

What is Software Architecture?

Software

Architecture
Reference

Architecture

Reference Model

Architectural Pattern

36
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Role of Software Architecture

If the only criterion for software was to get the right answer, we would not need

architectures―unstructured, monolithic systems would suffice.

But other things also matter, such as

• modifiability

• time of development

• performance

• coordination of work teams

Quality attributes such as these are largely dependent on architectural decisions.

• All design involves tradeoffs among quality attributes.

• The earlier we reason about tradeoffs, the better.

What is Software Architecture?

37
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Why Is Software Architecture Important?

Architecture is important for three primary reasons:

1. It provides a vehicle for communication among

stakeholders.

2. It is the manifestation of the most important design

decisions about a system.

3. It is a transferable, reusable abstraction of a system.

What is Software Architecture?

u

38
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Vehicle for Communication

Architecture provides a common frame of reference in which competing

interests can be exposed and negotiated. These interests include

• negotiating requirements with users

• keeping the customer informed of progress and cost

• implementing management decisions and allocations

Architects and implementers use the architecture to guide development.

• Doing so supports architectural analysis.

What is Software Architecture?

39
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Why Is Software Architecture Important?

Architecture is important for three primary reasons:

1. It provides a vehicle for communication

among stakeholders.

2. It is the manifestation of the most important design

decisions about a system.

3. It is a transferable, reusable abstraction of a system.

What is Software Architecture?

u

40
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 1

Architecture defines constraints on implementation:

• The implementation must conform to prescribed design decisions such

as those regarding

- elements

- interactions

- behaviors

- responsibilities

• The implementation must conform to resource allocation decisions such

as those regarding

- scheduling priorities and time budgets

- shared data and repositories

- queuing strategies

Architectures are both prescriptive and descriptive.

What is Software Architecture?

41
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 2

Architecture dictates the structure of the organization.

• Architecture represents the highest level decomposition of a system and is used as a

basis for

- partitioning and assigning the work to be performed

- formulating plans, schedules, and budgets

- establishing communication channels among teams

- establishing plans, procedures, and artifacts for configuration management, testing,

integration, deployment, and maintenance

For managerial and business reasons, once established, an architecture becomes very

difficult to change.

What is Software Architecture?

42
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 3

Architecture permits/precludes the achievement of a system’s desired quality attributes.

The strategies for achieving them are architectural.

What is Software Architecture?

If you desire… you need to pay attention to…

high performance minimizing the frequency and volume of inter-element communication

modifiability limiting interactions between elements

security managing and protecting inter-element communication

reusability minimizing inter-element dependencies

subsetability controlling the dependencies between subsets and, in particular,

avoiding circular dependencies

availability the properties and behaviors that elements must have and the

mechanisms you will employ to address fault detection, fault prevention,

and fault recovery

and so forth …

43
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 4

Architecture allows us to predict system quality attributes without waiting

until the system is developed or deployed.

• Since architecture influences quality attributes in known ways, it

follows that we can use architecture to predict how quality attributes may

be achieved.

• We can analyze an architecture to evaluate how well it meets its quality

attributes requirements.

- These analysis techniques may be heuristic (e.g., back-of-the-envelope

calculations, experience-based analogy) and inexpensive.

- They may be precise (e.g., prototypes, simulations, instrumentation)

and expensive.

- Or they may fall in between (e.g., scenario-based evaluation).

What is Software Architecture?

44
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 5

Architecture helps us reason about and manage changes to a system during

its lifetime.

All systems accumulate technical debt over their lifetimes. When this debt is

attributable to architectural degradation, we call it architecture debt.

Fortunately, by analyzing an architecture we can monitor and manage

architectural debt.

Typically, refactoring is used to pay down architecture debt. When to refactor

is a decision that includes both technical and business considerations.

What is Software Architecture?

45
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 6

Once an architecture has been defined, it can be analyzed and prototyped

as a skeletal system. Doing so aids the development process in three ways:

1. The architecture can be implemented as a skeletal framework into which

elements can be “plugged.”

2. Risky elements of the system can be identified via the architecture and

mitigated with targeted prototypes.

3. The system is executable early in the product’s lifecycle. The fidelity

of the system increases as prototyped parts are replaced by completed

elements.

What is Software Architecture?

46
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most Important Design Decisions – 7

Architecture enables more accurate cost and schedule estimates,

project planning, and tracking:

• The more knowledge we have about the scope and structure of a

system, the better our estimates will be.

• Teams assigned to individual architectural elements can provide

more accurate estimates.

• Project managers can roll up estimates and resolve dependencies

and conflicts.

What is Software Architecture?

47
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Why Is Software Architecture Important?

Architecture is important for three primary reasons:

1. It provides a vehicle for communication

among stakeholders.

2. It is the manifestation of the most important design

decisions about a system.

3. It is a transferable, reusable abstraction of

a system.

What is Software Architecture?

u

48
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Transferable, Reusable Abstraction – 1

Software architecture constitutes a model that is transferable across

similar systems.

Software architecture can serve as the basis of a strategic reuse agenda

that includes the reuse of

• requirements

• development-support artifacts (templates, tools, etc.)

• code

• components

• experience

• standards

What is Software Architecture?

49
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Transferable, Reusable Abstraction – 2

Architecture supports building systems using large, independently

developed components.

• Architecture-based development focuses on composing elements rather

than programming them.

• Composition is possible because the architecture defines which elements

can be incorporated into the system and how they are constrained.

• The focus on composition provides for component interchangeability.

• Interchangeability is key to allowing third-party software

elements, subsystems, and communication interfaces to be used

as architectural elements.

What is Software Architecture?

50
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Transferable, Reusable Abstraction – 3

Architecture enables template-based development.

• An architecture embodies design decisions about how elements interact.

Such decisions can be localized and written once.

• Templates can be used to code element interaction frameworks.

- The developer fills in the unique part and reuses the common part.

• Templates speed up development and increase reliability.

- The source of many errors is eliminated.

- Fixing one error causes improvements in many places.

• Aspect-oriented design is a modern-day approach to address many of

these concerns.

What is Software Architecture?

51
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

A human body

comprises multiple

structures.

a static view of one

of those structures

a dynamic view of

that same structure

Architectural Structures – 1
What is Software Architecture?

One body has many structures. So it is with software…

52
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Structures – 2
What is Software Architecture?

These views are

needed by a

cardiologist…

Different stakeholders are interested

in different structures.

So it is with software…

…but they won’t do

for an orthopedist.

53
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Modern software systems are too complex to grasp all at

once. At any moment, we restrict our attention to a small

number of a software system’s structures.

To communicate meaningfully about an architecture,

we must make clear which structure or structures we

are discussing.

Architectural Structures – 3
What is Software Architecture?

54
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Structures – 4

Architectural structures for software systems can be divided into three types:

1. Module structures – consisting of elements that are units of implementation

called modules and the relationships among them

2. Component-and-connector structures – consisting of runtime components

(units of computation) and the connectors (communication paths) between them

3. Allocation structures – consisting of software elements and their relationships to

elements in external environments in which the software is created and executed

What is Software Architecture?

55
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Structures Summary
What is Software Architecture?

Architects must focus on whatever structures will provide them with the most
leverage in achieving the desired quality attributes of a system.

Component-and-Connector

Client-Server

Concurrency

Process

Shared-Data

…

Module

Decomposition Class/Generalization

Uses

Layered

…

Allocation

Work Assignment

Deployment Implementation

…

56
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary

Architecture is important because it

• provides a communication vehicle among stakeholders

• is the embodiment of the most important design decisions

• is a transferable, reusable abstraction of a system

An architecture is composed of many structures, each of which comprises

software elements and their relationships.

• Each structure provides engineering leverage and insight on different

quality attributes.

• Architects select those structures that help to achieve the desired quality

attributes in the implementation.

What is Software Architecture?

57
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

THE ARCHITECTURE

INFLUENCE CYCLE

58
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

This session will familiarize participants with

• factors influencing software architectures

• factors influenced by software architectures

• the cycle of architecture influences

The Architecture Influence Cycle

59
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Where Do Architectures Come From?

Software architecture is based on much more than requirements specifications.

It is the result of many different technical, business, and social influences.

Its existence, in turn, influences the technical, business, and social environments that

subsequently affect future architectures.

Architects need to know and understand the nature, source, and priority of these

influences as early in the process as possible.

The Architecture Influence Cycle

60
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Factors Influencing Architectures

Architectures are influenced by

• system stakeholders

• the development organization’s business environment

• the technical environment

• the architect’s professional background and experience

The Architecture Influence Cycle

u

61
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Factors Influencing Architectures

Architectures are influenced by

• system stakeholders

• the development organization’s business environment

• the technical environment

• the architect’s professional background and experience

The Architecture Influence Cycle

u

62
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Influence of System Stakeholders

Stakeholders have an interest in the construction of a software system and

might include

• customers

• users

• developers

• project managers

• marketers

• maintainers

Stakeholders have different concerns that they want to guarantee

and/or optimize.

The Architecture Influence Cycle

63
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Customers

Customers are the people who pay for the system’s development.

Customers are not always users.

Customers’ concerns include the system’s

• cost

• functionality

• lifetime

• development time/time to market

• quality

• flexibility to do many things on delivery day and over its lifetime

The Architecture Influence Cycle

64
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Users

Users are the people who will use the system including

• end users

• system administrators

End users are concerned primarily with a system’s ease of use in terms of

functionality to help them do their jobs.

System administrators are concerned with a system’s ease of use in terms

of their ability to

• configure the system

• manage users

• establish security and detect security breaches

• back up information

• recover and rebuild the system

The Architecture Influence Cycle

65
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Management

Management stakeholders include those managers from the

• development organization

• customer organization

Management’s concerns include

• amortizing development costs

• maintaining the workforce’s core competency and organizational training

• investing to achieve strategic goals

• keeping development costs as low as possible

• adhering to the development schedule

• maintaining product quality

The Architecture Influence Cycle

66
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Other Stakeholders

Developers are concerned about languages, technology, and the best mix to solve

the problem.

Maintainers want a system they can fix, improve, tune, configure, deploy, extend,

and so forth.

Marketers want features that meet or exceed those of the competition at a

competitive price.

Who are the stakeholders for your systems?

The Architecture Influence Cycle

67
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Concerns of System Stakeholders
The Architecture Influence Cycle

Marketing
stakeholder

Behavior,
performance,

security,
reliability,
usability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Architect

Development
organization’s
management
stakeholder

End-user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

How can I make sure the

system has all that?

68
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Stakeholder Involvement

The organizational goals and system properties required by the business/mission

are rarely understood, let alone fully articulated.

Customers’ quality attribute requirements are seldom documented, which results in

• goals not being achieved

• inevitable conflict between stakeholders

Architects must identify and actively engage stakeholders early in the lifecycle to

• understand the real constraints of the system

• manage the stakeholders’ expectations

• negotiate the system’s priorities

• make tradeoffs

The Architecture Influence Cycle

69
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Factors Influencing Architectures

Architectures are influenced by

• system stakeholders

• the development organization’s business

environment

• the technical environment

• the architect’s professional background and experience

The Architecture Influence Cycle

u

70
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Development Organization’s Business Environment

Software architecture can be shaped by business/mission concerns, including

The Architecture Influence Cycle

• existing architectures

• plans for long-term infrastructure

• organizational structure

• projected lifetime of the system

• workforce utilization

• cost

• investment in existing assets

What factors influence your organization?

• time to market

• rollout schedule

• use of legacy systems

• available expertise

• support for existing products

• targeted markets

• political interests

71
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Factors Influencing Architectures

Architectures are influenced by

• system stakeholders

• the development organization’s business environment

• the technical environment

• the architect’s professional background and experience

The Architecture Influence Cycle

u

72
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Influence of Technical Environment on Architectures

The technical environment that is current when an architecture is designed will

influence that architecture.

The Architecture Influence Cycle

Technology du Jour

DevOps

73
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Factors Influencing Architectures

Architectures are influenced by

• system stakeholders

• the development organization’s business environment

• the technical environment

• the architect’s professional background and

experience

The Architecture Influence Cycle

u

74
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Influence of Architect’s Professional Background on
Architectures

Architects make choices based on their past experiences:

• Good experiences will lead to the replication of those prior designs that

worked well.

• The methods, techniques, and/or technology that led to bad experiences

will be avoided in new designs, even if those methods or techniques

might work better in subsequent designs.

• An architect’s choices might be influenced by education and training.

The Architecture Influence Cycle

75
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Influences on the Architecture
The Architecture Influence Cycle

All citations are from the course textbook, Software Architecture in Practice, Third Edition, unless otherwise noted.

76
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectures Affect the Factors That Influence Them

Once the architecture is created and a system is built,

both will affect

• the structure and goals of the development organization

• stakeholder requirements

• the architect’s experience

• the technical environment

The Architecture Influence Cycle

u

77
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectures Affect the Factors That Influence Them

Once the architecture is created and a system is built,

both will affect

• the structure and goals of the development

organization

• stakeholder requirements

• the architect’s experience

• the technical environment

The Architecture Influence Cycle

u

78
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Architectures Affect the Development Organization – 1

Architectures can influence the structure of the development organization.

By prescribing the structure for a system, architectures also prescribe the units of

software that must be implemented and integrated.

In turn, software units are the basis for

• team formation

• development, test, and integration activities

• resource allocation in schedules and budgets

The Architecture Influence Cycle

79
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Architectures Affect the Development Organization – 2

Architectures can influence the goals of an organization.

A successful system built from an architecture can enable a company to

establish a foothold in a particular market area:

• The architecture can provide opportunities for the efficient production and

deployment of similar systems.

• The organization might adjust its goals to take advantage of new

market opportunities.

The Architecture Influence Cycle

80
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectures Affect the Factors That Influence Them

Once the architecture is created and a system is built,

both will affect

• the structure and goals of the development organization

• stakeholder requirements

• the architect’s experience

• the technical environment

The Architecture Influence Cycle

u

81
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Architectures Affect Stakeholder Requirements

Architectures can influence customers’ requirements:

• Knowledge of similarly fielded systems leads customers to ask for particular

kinds of features.

- Stakeholders learn the language of the architecture, perceive the benefits of the

architecture, and want similar kinds of architectures―such as service-oriented,

client-server, Java Enterprise Edition (JEE), .NET, peer-to-peer, and so forth.

- Stakeholders will demand quality architectures in future systems.

• Stakeholders will alter their system requirements based on the availability of

existing systems and components.

The Architecture Influence Cycle

82
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectures Affect the Factors That Influence Them

Once the architecture is created and a system is built,

both will affect

• the structure and goals of the development organization

• stakeholder requirements

• the architect’s experience

• the technical environment

The Architecture Influence Cycle

u

83
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The process of building systems influences the architect’s

experience base. This, in turn, influences how subsequent systems

in the organization are constructed:

• Successful systems built around a technology, tool, or method

will engender future systems that are built in the same way.

• The architecture for a failed system is less likely to be chosen

for future projects.

How Architectures Affect the Architect’s Experience
The Architecture Influence Cycle

84
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectures Affect the Factors That Influence Them

Once the architecture is created and a system is built,

both will affect

• the structure and goals of the development organization

• stakeholder requirements

• the architect’s experience

• the technical environment

The Architecture Influence Cycle

u

85
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Architectures Affect the Technical Environment

Occasionally, a system, an architecture, or a collection of technologies,

such as those listed below, will change the foundations of the technical

environment in which architects operate and learn:

The Architecture Influence Cycle

• relational databases

• compiler generators

• the Internet

• n-tier client-server

• spreadsheets

• GUIs/windowing systems

• the World Wide Web

• cloud infrastructure

• dependency injection

• lambda architecture

• NoSQL databases

• service-oriented architecture

• microservices

• container infrastructure

86
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

A Cycle of Influences

The relationships among business/mission goals, product requirements, architect

experience, architectures, and fielded systems form a cycle with feedback loops

that an organization can use and manage to

• handle growth

• expand its enterprise area

• take advantage of previous investments in architectures and system building

The Architecture Influence Cycle

87
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture Influence Cycle (AIC)
The Architecture Influence Cycle

88
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary

Architecture involves more than just the technical requirements for a given

system. It also involves nontechnical factors such as the

• architect’s background

• organization (structure, core competency, experience)

• business/mission goals

Architecture influences the factors that affect it, such as

• architects learning from experience

• the organization being changed

• new markets being entered

• the state of the practice being advanced

The Architecture Influence Cycle

89
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

THE WORLD WIDE WEB—

A CASE STUDY IN ACHIEVING

QUALITY ATTRIBUTES

90
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

This case study will use the World Wide Web (WWW) to illustrate how

architectural decisions lead to the achievement of quality attribute

requirements. Participants will

• understand the relationship between the architecture of the WWW and

the architectural environments that spawned it

• appreciate the architectural decisions made by the WWW’s software

developers to support scalability

• appreciate how shifting requirements can cause an architecture to

change over time

• see how a system traverses the Architecture Influence Cycle (AIC)

The World Wide Web—A Case Study in Achieving Quality Attributes

91
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

March, 1989 – While at CERN,1 Tim Berners-Lee wrote a proposal

titled “Information Management: A Proposal.”

• He used the concept of hypertext, the foundation of the WWW.

• The proposal was rejected initially; he recirculated it in 1990.

• He developed the initial browser on his

NeXT system by November 1990.

• A WYSIWYG (what you see is what you get) browser and editor

illustrated the concept

of using hypertext to display information.

• A line-mode browser was released by anonymous File Transfer

Protocol (FTP) to the general public in January 1992.

Historical Notes
The World Wide Web—A Case Study in Achieving Quality Attributes

1 CERN is the Organisation Européenne pour la Recherche Nucléaire, which in

English translates to the European Organization for Nuclear Research.

Image credit: CC BY-SA 3.0

https://commons.wikimedia.org/wiki/Tim_Berners-

Lee#/media/File:First_Web_Server.jpg

92
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Original Requirements – 1

Provide remote access across networks – Any information had to be accessible
from any machine on the CERN network.

Support heterogeneity – The system could not be limited to specific software, a
piece of hardware, or an operating system.

Avoid centralized control of the system.

Support access to existing data and databases.

Support private links to data and databases.

Display on 24 X 80 character ASCII terminal – At the inception of the Web, using
graphics was optional.

The World Wide Web—A Case Study in Achieving Quality Attributes

93
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Original Requirements – 2

Support data analysis – Let users search across various data sources to look for

anomalies, regularities, irregularities, and so forth.

Support live links – Given that information changes all the time, there must be some

way of updating a user’s view of it.

The World Wide Web—A Case Study in Achieving Quality Attributes

94
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Original Quality Attributes

Platform portability

• had to allow a variety of users with different desktop hardware and operating

systems to share the same data

- Hardware included Intel, Apple, NeXT, Unix, Commodore, and others.

- Different versions of operating systems were used on these machines as well.

Scalability/extensibility

• had to allow adding and removing users

• had to support emerging hardware and operating systems

• had to allow the capacity for servers and data to be extended

The World Wide Web—A Case Study in Achieving Quality Attributes

95
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Original Non-Requirements

Graphics and multimedia

Different link types

Visual history

Copyright enforcement

Security

Privacy

Markup format

The World Wide Web—A Case Study in Achieving Quality Attributes

96
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Initial Architecture Influence Cycle for the Web
The World Wide Web—A Case Study in Achieving Quality Attributes

CERN Researcher
(Berners-Lee)

WWW
Client-Server

WWWInternet and hypertext

Heterogeneous
distributed computing

Distributed autonomous
groups at CERN

Backward
compatibility

97
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Choices

Berners-Lee made these key architectural choices:

• used an existing internet protocol (TCP/IP), but added another layer to

encapsulate other network protocols (e.g., Hypertext Transfer Protocol [HTTP])

• provided a layered architecture

• used a client-server architecture

- Very thin, portable clients called browsers interpret Hypertext Markup Language

(HTML) documents.

- Browsers talk to servers that host data in many formats.

The World Wide Web—A Case Study in Achieving Quality Attributes

98
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

WWW Architectural Approach
The World Wide Web—A Case Study in Achieving Quality Attributes

This is a Client-Server view of the system.

libWWW provides protocol support and masks platform details.

Remote access is achieved by building WWW on top of the Internet.

99
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The developer’s view was a layered architecture that

• illustrated major layers of libWWW

• assigned responsibilities to each layer

Meeting the Requirements: libWWW
The World Wide Web—A Case Study in Achieving Quality Attributes

Access Modules

Stream Modules

Core

Generic Utilities

Application Modules

<< allowed to use>>

Key: UML

<< allowed to use>>

<< allowed to use>>

<< allowed to use>>

100
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Basic building blocks for the system

• network management

• data types

• string manipulation utilities

Generic Utilities
The World Wide Web—A Case Study in Achieving Quality Attributes

Generic Utilities

Key: UML

101
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Is the skeletal functionality of a Web application such as

• network access

• data management

• parsing

• Logging

Provides a standard interface for Web applications

The actual functionality is provided by plug-ins:

• Plug-ins are registered at runtime and support various

protocols, data formats, and translation.

Core
The World Wide Web—A Case Study in Achieving Quality Attributes

Core

Generic Utilities

Key: UML

<< allowed to use>>

102
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Provide an abstraction of stream data used by all data

transported between the application and the network.

Stream Modules
The World Wide Web—A Case Study in Achieving Quality Attributes

Stream Modules

Core

Generic Utilities

Key: UML

<< allowed to use>>

<< allowed to use>>

103
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Provide a set of network-protocol-aware modules

• HTTP/HTTP Secure (HTTPS)

• Wide Area Information Server

(WAIS)

• FTP

• Telnet

• rlogin

• Gopher

• local file system

Make it easy to add new protocols

Access Modules
The World Wide Web—A Case Study in Achieving Quality Attributes

Access Modules

Stream Modules

Core

Generic Utilities

Key: UML

<< allowed to use>>

<< allowed to use>>

<< allowed to use>>

104
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Are not actual applications; rather, they are sets of

application programming interfaces (APIs) that provide

functionality useful for writing end-user applications.

Provide services such as

• caching

• logging

• registering proxy servers and gateways

• history maintenance

Application Modules
The World Wide Web—A Case Study in Achieving Quality Attributes

Access Modules

Stream Modules

Core

Generic Utilities

Application Modules

<< allowed to use>>

Key: UML

<< allowed to use>>

<< allowed to use>>

<< allowed to use>>

105
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Typical WWW Client
The World Wide Web—A Case Study in Achieving Quality Attributes

106
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Elements of the HTTP Client

User Interface (UI) Manager is responsible for the look and feel of the UI

(e.g., Web browser).

Presentation Manager delegates document types to viewers:

• external: QuickTime movies, MP3 audio

• internal: HTML, Graphics Interchange Formats (GIFs) to UI Manager

UI Manager captures the user’s URL request and passes it to Access Manager.

Access Manager determines whether the URL has been cached; if it hasn’t, the

component initiates retrieval through Protocol Manager and Stream Manager.

The World Wide Web—A Case Study in Achieving Quality Attributes

107
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Typical WWW Server
The World Wide Web—A Case Study in Achieving Quality Attributes

Serve HTML back to Client

108
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Elements of the HTTP Server

The HTTP server receives a URL request and passes it to the Path Resolver,

which determines the file location for the document

(assuming local).

The HTTP server checks the access list to see if access is permitted and then

gets the document from the file system.

Common Gateway Interface (CGI) is a special document type that allows

customized access to other data or programs.

HTML is served by the HTTP server back to the Client.

The World Wide Web—A Case Study in Achieving Quality Attributes

109
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Extending the Server

CGI allows

• dynamic documents

• the addition of data to existing databases

• customized queries

• clickable images

CGI scripts

• can be written in a variety of languages

• run as separate processes

The World Wide Web—A Case Study in Achieving Quality Attributes

110
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Problems with CGI

Extensibility of the server is principally supported by CGI scripts in

libWWW applications.

However, CGI

• has security holes

• is not portable

This part of the architecture limited the future growth of applications based

on libWWW.

The World Wide Web—A Case Study in Achieving Quality Attributes

111
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Achieving Quality Attributes

Goal How Achieved

Remote access Build the Web on top of the Internet, and adhere to defined protocols.

Interoperability Use the Layers pattern in libWWW.

Extensibility of software Isolate protocols and data types in libWWW. Abstract common

services. Hide information. Use configuration files.

Extensibility of data Keep data items independent (HW, SW, format, etc.) except for URL

references.

Scalability Use the Client-Server pattern. Allow concurrency.

The World Wide Web—A Case Study in Achieving Quality Attributes

112
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

libWWW Lessons Learned – 1

libWWW has had many releases. Lessons learned from the many iterations

include the following:

• Well-defined APIs are required.

• Functionality must be layered.

• APIs must support a dynamic, open-ended set of features that can be

added or replaced at runtime.

• Processes must be thread safe.

The World Wide Web—A Case Study in Achieving Quality Attributes

113
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

libWWW Lessons Learned – 2

Not all these goals were met!

• The Core makes assumptions about the essential services implemented in

other layers.

- Not all features can be replaced dynamically.

- Feature replacement still takes a restart so that new services can be registered.

• Since libWWW is meant to run on many different platforms, it cannot depend

on any one thread model.

- It uses pseudo-threads that provide some, but not all, of the required functionality.

The World Wide Web—A Case Study in Achieving Quality Attributes

114
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Another Cycle Through the AIC

The incredible success of the Web has resulted in unprecedented interest

from business and hence unprecedented pressure on the architecture, via

the AIC.

Business requirements have dominated the Web architecture.

These requirements have now strayed considerably from the original vision

at CERN.

The World Wide Web—A Case Study in Achieving Quality Attributes

115
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

WWW Growth1
The World Wide Web—A Case Study in Achieving Quality Attributes

1 Graphic adapted from http://www.internetlivestats.com/total-number-of-websites/#trend

116
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Requirements Come and Go

With the incredible success and growth of the Web came new requirements.

For example,

• with e-commerce came requirements for security and privacy

• with cyberporn came requirements for content labeling (Platform for

Internet Content Selection)

If these requirements had appeared in the original proposal, what would their

fate have been?

The World Wide Web—A Case Study in Achieving Quality Attributes

117
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

New Requirements – 1

High performance – Popular websites will have tens of millions of hits per day.

Users expect low latency and will not tolerate their requests being refused.

High availability – E-commerce sites are expected to be available 24/7.

Scalability – As businesses and their websites grow, the amount of data

that can be stored and accessed on the Web must also grow without impacting

performance.

The World Wide Web—A Case Study in Achieving Quality Attributes

118
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

New Requirements – 2

Security – Users must be assured that any sensitive information will not

be compromised. Operators of the Web must be able to prevent/detect

attacks that would render it unusable.

Modifiability – E-commerce sites change frequently, in many cases daily,

so their content must be very simple to change.

The World Wide Web—A Case Study in Achieving Quality Attributes

119
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Second-Generation System Architecture
The World Wide Web—A Case Study in Achieving Quality Attributes

120
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise

How do decisions in the second-generation WWW system architecture

address the new quality attribute requirements?

The World Wide Web—A Case Study in Achieving Quality Attributes

121
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Third-Generation System Architecture1
The World Wide Web—A Case Study in Achieving Quality Attributes

1 Copeland, W. K. & Hwang, C. J. “Third-Generation Web Applications, Full-

Service Intranets, EDI: The Fully Integrated Business Model for Electronic

Commerce.” INET’97.

https://www.isoc.org/inet97/proceedings/C5/C5_2.HTM#s3

122
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Changes in the AIC for the Web – 1

Several types of organizations (service providers and content providers) provide

the technical environment.

Service providers produce the software—browsers, servers, databases,

application servers, security technologies (such as firewalls), transaction servers,

networks, and routers.

Content providers produce the data.

The World Wide Web—A Case Study in Achieving Quality Attributes

123
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Changes in the AIC for the Web – 2

There is heavy competition in all these areas.

Open source projects, aside from the World Wide Web Consortium (W3C),

continue to have considerable influence (such as the Apache project).

CERN has no role.

Languages such as PHP, JavaScript, HTML5, AJAX, and Ruby are changing the

way functionality is developed and delivered on the Web.

The World Wide Web—A Case Study in Achieving Quality Attributes

124
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary

The Web has been so successful because of how its key quality attributes were

satisfied, for example, through

• a flexible client-server architecture

• well-defined protocols

• no centralized control

• libWWW layers

These structures have withstood the test of time and been reinvented in the face of

dramatic new requirements.

The success of the Web has meant that the AIC has been traversed multiple times in

just a few years, creating new business environments, opportunities, and technologies.

The World Wide Web—A Case Study in Achieving Quality Attributes

125
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

UNDERSTANDING QUALITY

ATTRIBUTES

126
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

This module will familiarize participants with

• quality attributes

• the effect of architectural decisions on quality attributes

• how to express quality attribute requirements via scenarios

• a method for eliciting quality attributes

Understanding Quality Attributes

127
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Quality Attributes

Quality attributes are properties of work products or goods by which stakeholders

judge their quality.

Some examples of quality attributes by which stakeholders judge the quality of

software systems are

Understanding Quality Attributes

• availability

• adaptability

• throughput

• configurability

• subsetability

• reusability

• performance

• security

• modifiability

• reliability

• usability

• calibratability

128
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Stakeholders and Quality Attributes
Understanding Quality Attributes

“Increase market share”

“Maintain a quality reputation”

“Introduce new capabilities seamlessly”

“Provide a programmer-friendly framework”

“Integrate with other systems easily”

Modifiability, Usability

Performance, Usability, Availability

Performance, Availability, Modifiability

Modifiability

Interoperability, Portability, Modifiability

Stakeholder

Concerns

Quality Attribute

Requirements

Lead To

129
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Quality Attributes and Architecture

Quality attribute requirements for software systems have a significant influence on the
architecture of those systems.

The degree to which a software system meets its quality attribute requirements depends
on its architecture.

Architectural decisions are made to promote various quality attributes.

A change in an architecture to promote one quality attribute often affects other quality
attributes.

Architecture provides the foundation for achieving quality attributes but is useless if not
adhered to in the implementation.

Understanding Quality Attributes

130
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Functionality and Architecture

Functionality is the ability of a system to do the work it was intended

to do.

• Functionality often has associated quality attribute requirements (e.g., a function

is required to have a certain level of availability, reliability, and performance).

• We can achieve functional requirements and yet fail to meet their associated

quality attribute requirements.

• Functionality can be achieved using many different architectures.

• Achieving quality attribute requirements can be achieved only through judicious

choice of architectures.

Understanding Quality Attributes

131
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Describing Quality Attributes

Quality attribute names by themselves are not enough.

• Quality attribute requirements are often non-operational.

- For example, it is meaningless to say that the system shall be “modifiable.” Every

system is modifiable with respect to some set of changes and not modifiable with

respect to some other set of changes.

• Heated debates often revolve around the quality attribute to which a particular

system behavior belongs.

- For example, system failure is an aspect of availability, security, and usability.

• The vocabulary describing quality attributes varies widely.

Understanding Quality Attributes

132
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Quality Attribute Scenarios – 1

A solution to the problem of describing quality attributes is to use quality attribute

scenarios to clearly characterize them.

A quality attribute scenario is a short description of how a system is required to

respond to some stimulus.

Understanding Quality Attributes

133
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Quality Attribute Scenarios – 2

A quality attribute scenario consists of six parts:

1. source – an entity that generates a stimulus

2. stimulus – a condition that affects the system

3. artifact(s) – the part of the system that was stimulated by the stimulus

4. environment – the condition under which the stimulus occurred

5. response – the activity that results because of the stimulus

6. response measure – the measure by which the system’s response will be evaluated

Understanding Quality Attributes

134
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Parts of a Quality Attribute Scenario
Understanding Quality Attributes

1
2

3
4

Artifact(s): Response

Response
MeasureEnvironment

Stimulus

Source

Process, Storage,
Processor,
Communication

1

5

64

2

3

135
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Concrete Scenarios

Quality attribute scenarios that are created for a specific system are called

concrete scenarios. For example:

An unanticipated external message is received by a process during normal operation. The

process informs the operator of the message’s receipt, and the system continues to

operate with no downtime.

Understanding Quality Attributes

Source External to the system

Stimulus Unanticipated message

Artifact(s) Process

Environment Normal operation

Response Inform operator; continue to operate.

Response Measure No downtime

136
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

General Scenarios

General scenarios are system-independent scenarios that allow stakeholders to

communicate more effectively about quality attribute requirements and can assist

stakeholders in developing concrete scenarios.

General scenarios can be developed for any quality attribute.

General scenarios are given in your textbook for the following quality attributes:

Understanding Quality Attributes

• availability

• interoperability

• modifiability

• performance

• security

• testability

• usability

137
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Using General Scenarios – 1

Source Internal/external: people, hardware, software, physical infrastructure or environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact(s) Processors, communications channels, persistent storage, processes

Environment Normal operation, startup, shutdown, repair mode, degraded operation, overloaded operation

Response Prevent the fault from becoming a failure.

Detect the fault:

• Log the fault.

• Notify the appropriate entities (people or systems).

Recover from the fault:

• Disable source of events causing the fault.

• Be temporarily unavailable while repair is being effected.

• Fix or mask the fault/failure, or contain the damage it causes.

• Operate in a degraded mode while repair is being effected.

Response

Measure

Time or time interval when the system must be available

Availability percentage (e.g., 99.999%)

Time to detect the fault / Time to repair the fault

Time or time interval in which the system can be in degraded mode

Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a class of faults that the system prevents or handles without failing

Understanding Quality Attributes

General scenario for availability (see p. 86, Table 5.3)

138
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Using General Scenarios – 2
Understanding Quality Attributes

Select items from a general scenario to form a concrete scenario.

Source Internal/external: people, hardware, software, physical infrastructure or environment

Stimulus Fault: omission, crash, incorrect timing, incorrect response

Artifact(s) Processors, communications channels, persistent storage, processes

Environment Normal operation, startup, shutdown, repair mode, degraded operation, overloaded operation

Response Prevent the fault from becoming a failure.

Detect the fault:

• Log the fault.

• Notify the appropriate entities (people or systems).

Recover from the fault:

• Disable source of events causing the fault.

• Be temporarily unavailable while repair is being effected.

• Fix or mask the fault/failure, or contain the damage it causes.

• Operate in a degraded mode while repair is being effected.

Response

Measure

Time or time interval when the system must be available

Availability percentage (e.g., 99.999%)

Time to detect the fault / Time to repair the fault

Time or time interval in which the system can be in degraded mode.

Proportion (e.g., 99%) or rate (e.g., up to 100 per second) of a class of faults that the system prevents or handles

without failing.

139
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Using General Scenarios – 3

Resulting concrete scenario:

When a processor crash occurs during normal operation, the system should detect the failure,

record it, notify the operator, and continue to operate in a degraded mode. The system must be

back to normal operation in less than 15 minutes.

Understanding Quality Attributes

Source Internal hardware

Stimulus Crash

Artifact(s) Processors

Environment Normal operation

Response Detect the fault:

• Log the fault.

• Notify the appropriate entities (people or systems).

Recover from the fault:

• Operate in a degraded mode while repair is being effected.

Response Measure System can be in degraded mode no more than 15 minutes.

140
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Developing Concrete Scenarios – 1

Develop a six-part concrete scenario for the system and quality attribute of your choice.

Using the worksheets on the following pages,

Understanding Quality Attributes

Choose a system.

Develop a concrete scenario for the chosen system.

Present your results.

141
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Developing Concrete Scenarios – 2
Worksheet

Understanding Quality Attributes

Choose a system for which you will develop a concrete quality

attribute scenario. For example, you could choose a work-related

system, an automated teller machine (ATM), or a patient-monitoring

system.

142
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Developing Concrete Scenarios – 3
Worksheet

Understanding Quality Attributes

Develop a concrete scenario that will characterize one of the quality attribute

requirements for the chosen system (e.g., performance, availability).

Use one of the following general scenarios from your textbook to assist you:

Availability – p. 86, Table 5.3 Security – p. 150, Table 9.1

Interoperability – p. 108, Table 6.2 Testability – p. 163, Table 10.1

Modifiability – p. 120, Table 7.1 Usability – p. 176, Table 11.1

Performance – p. 134, Table 8.1

143
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Developing Concrete Scenarios – 4
Worksheet

Develop a concrete scenario (continued).

Understanding Quality Attributes

Stimulus Source

Stimulus

Artifact(s)

Environment

Response

Response Measure

144
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Developing Concrete Scenarios – 5
Worksheet

Understanding Quality Attributes

Present your concrete scenario.

145
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Quality Attributes in Practice

The quality attributes we have discussed in this module are fairly common in

nearly all systems.

In practice, many other quality attributes exist that are domain and product

specific (e.g., “calibratability”).

Specific quality attributes may be important to system stakeholders but have no

general relevance.

It’s not important for all domain-specific quality attributes to be mapped to one of

those described in this module.

Software architects need to be aware of the driving quality attributes―whatever

they are!

Understanding Quality Attributes

146
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

SEI Quality Attribute Workshop

The Quality Attribute Workshop (QAW) is a facilitated method that engages system

stakeholders early in the lifecycle to discover the driving quality attributes of a

software-intensive system.

Key points about the QAW are that it is

• system-centric

• stakeholder focused

• used before the software architecture has been created

• scenario based

Understanding Quality Attributes

147
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

QAW Steps

1. QAW Presentation and Introductions

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement

Understanding Quality Attributes

Iterate as necessary with broader

stakeholder community.

148
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Potential Next Steps

Update Architectural Vision

Refine Requirements

Create Prototypes

Exercise Simulations

Create Architecture

QAW Benefits and Next Steps
Understanding Quality Attributes

Potential Benefits

• increased stakeholder communication

• clarified quality attribute requirements

• informed basis for architectural decisions

QAW

Quality

Attribute

Scenarios:

• raw

• prioritized

• refined

Evaluate
Architecture

can be
used to

149
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

More on the QAW

A detailed discussion of the QAW is provided in

• your textbook, Section 16.2, pages 294–296

• the technical report titled Quality Attribute Workshops, Third Edition

• the course notes from the SEI Software Architecture Design and Analysis course

Understanding Quality Attributes

150
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary – 1

If the only thing that matters is getting the right answer, an unstructured,

monolithic system will suffice.

However, other things do matter such as performance, modifiability, availability,

and so forth. We call these things quality attributes.

The degree to which a system meets quality attribute requirements depends on

architectural decisions.

Quality attribute requirements are often vaguely understood and/or

weakly articulated.

Understanding Quality Attributes

151
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary – 2

Quality attribute scenarios can help us better describe quality attribute requirements.

General scenarios are available to assist us in developing concrete scenarios for

specific systems.

The Quality Attribute Workshop is a system-centric, stakeholder-focused process that

helps us elicit quality attribute requirements early in the lifecycle.

Understanding Quality Attributes

153
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

ACHIEVING QUALITY

ATTRIBUTES

154
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

This module will familiarize participants with

• the categories of design concepts:

• design principles

• reference architectures

• externally developed components

• deployment patterns

• architectural design patterns

• tactics

• the Attribute-Driven Design (ADD) method

Achieving Quality Attributes

155
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Design Concepts

We have identified six broad, reusable categories of design concepts that

aid an architect:

• design principles

• reference architectures

• externally developed components

• deployment patterns

• architectural design patterns

• tactics

Achieving Quality Attributes

156
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Design Principles

Design principles are basic tenets that guide us toward good designs.

There are general design principles, e.g.:

• Information hiding—hide data structures, hide details, hide variations

• Low coupling, high cohesion

There are more specific design principles. For example, the SOLID

principles aid in designing modifiable, extensible OO-based architectures.

Achieving Quality Attributes

157
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Design Principles

SOLID principles:

• Single Responsibility Principle: There should be only one reason for a

class to change.

• Open/Closed Principle: Classes and methods should be open for

extension but closed for modification.

• Liskov Substitution Principle: Every function or method that expects an

object parameter of class A must be able to accept a subclass of A as

well, without knowing it.

• Interface Segregation Principle: Classes should not be forced to

depend on interfaces that they do not use.

• Dependency Inversion Principle: High-level classes should not depend

on low-level classes. Both should depend on abstractions.

Achieving Quality Attributes

158
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Reference Architectures

Reference architectures are archetypes that

provide an overall logical structure for specific

types of applications, e.g.,

• Web application

• mobile application

• lambda architecture

They typically employ and combine patterns.

They aid in planning and reasoning.

Achieving Quality Attributes

From: Microsoft Application Architecture Guide

159
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Reference Architectures

Different reference architectures focus on

optimizing different quality attributes.

They are NOT complete architecture design

solutions.

They are often accompanied by tools,

frameworks, and platforms.

Achieving Quality Attributes

From: Microsoft Application Architecture Guide

160
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Externally Developed Components

Products: A product (or software package) refers to a self-contained functional

piece of software that can be integrated into the system that is being designed and

that requires only minor configuration or coding. Example: MySQL

Application frameworks: An application framework (or just framework) is a reusable

software element, constructed out of patterns and tactics, that provides generic

functionality addressing recurring domain and quality attribute concerns across a

broad range of applications. Example: Hibernate

Technology families: A technology family represents a group of specific

technologies with common functional purposes. Example: ORM

Platforms: A platform provides a complete infrastructure upon which to build and

execute applications. Example: Google Cloud

Achieving Quality Attributes

161
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Frameworks

A framework is a reusable software element that provides generic functionality,

addressing recurring concerns across a range of applications.

Example frameworks (for Java):

Achieving Quality Attributes

Concern Framework Use

OO – relational mapping Hibernate XML, annotations

Local user interface Swing Inheritance

Component connection Spring XML, annotations

Unit testing JUnit Inheritance, annotations

Web UI JSF XML

162
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Selection of Externally Developed Components

Selecting components can be challenging because of their complexity and wide variety.

Some useful criteria:

- Problem that it addresses

- Cost

- Type of license

- Support

- Learning curve

- Maturity

- Popularity

- Evolution tempo

- Compatibility and ease of integration

- Support for critical quality attributes

- Size

Achieving Quality Attributes

163
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Deployment Patterns

Deployment patterns provide models of how to physically structure the

system so that it can be deployed.

Example: Four-tier deployment pattern

Achieving Quality Attributes

Key: UML

164
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Design Patterns

• An architect for a software system designs its architectural structures to

solve a variety of design problems.

• The architectural structures designed by an architect are often based

on one or more patterns.

• But what exactly is a pattern?

Achieving Quality Attributes

165
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns Defined – 1

A pattern describes a particular recurring design problem that arises in

specific design contexts and presents a well-proven solution for the

problem. The solution is specified by describing the roles of its constituent

participants, their responsibilities and relationships, and the ways in

which they collaborate.

Achieving Quality Attributes

166
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns Defined – 2

A pattern establishes a relationship between

• a context – a situation that gives rise to a problem

• a problem – a recurring problem that arises in the given context

- provides a general statement of the problem

- describes any complementary/opposing forces

• a solution – a proven resolution to the problem

- describes how to solve the problem (i.e., balance the forces)

- describes the responsibilities of and static relationships between elements

- describes the runtime behavior of and interaction between elements

It’s up to the architect to decide how patterns are instantiated.

Achieving Quality Attributes

167
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layers Pattern

Context: All complex systems experience the need to develop and evolve portions of

the system independently. For this reason, the developers of the system need a clear

and well-documented separation of concerns, so that modules of the system may be

independently developed and maintained.

Problem: The software must to be segmented in such a way that the modules can be

developed and evolved separately with little interaction among the parts, supporting

portability, modifiability, and reuse.

Solution: To achieve this separation of concerns, the Layers pattern divides the

software into units called layers. Each layer is a grouping of modules that offers a

cohesive set of services. The usage must be unidirectional. Layers completely partition

a set of software, and each partition is exposed through a public interface.

Achieving Quality Attributes

168
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layers Pattern Solution

Overview: The Layers pattern defines layers (groupings of modules that offer a cohesive
set of services) and a unidirectional allowed-to-use relation among the layers.

Elements: Layer, a kind of module. The description of a layer should define what modules
the layer contains.

Relations: Allowed to use. The design should define the layer usage rules and any
allowable exceptions.

Constraints:

• Every piece of software is allocated to exactly one layer.

• There are at least two layers (but usually there are three or more).

• The allowed-to-use relations should not be circular
(i.e., a lower layer cannot use a layer above).

Weaknesses:

• The addition of layers adds up-front cost and complexity to a system.

• Layers contribute a performance penalty.

Achieving Quality Attributes

169
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layers Pattern Example
Achieving Quality Attributes

Layer 3

Solution

(continued)

F3.1 F3.2 F3.3

Layer 1

Key

Layer n Layer

Function

Allowed to use

Fx.y

F1.1 F1.2

Layer 2

F2.1 F2.2

170
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Broker Pattern

Context: Many systems are constructed from a collection of services distributed across

multiple servers. Implementing these systems is complex because you need to worry

about how the systems will interoperate—how they will connect to each other and how

they will exchange information—as well as the availability of the component services.

Problem: How do we structure distributed software so that service users do not need to

know the nature and location of service providers, making it easy to dynamically change

the bindings between users and providers?

Solution: The Broker pattern separates users of services (clients) from providers of

services (servers) by inserting an intermediary, called a broker. When a client needs a

service, it queries a broker via a service interface. The broker then forwards the client’s

service request to a server, which processes the request.

Achieving Quality Attributes

171
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Broker Pattern Example
Achieving Quality Attributes

172
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Broker Pattern Solution – 1

Overview: The Broker pattern defines a runtime component, called a broker, that

mediates the communication between a number of clients and servers.

Elements:

• Client, a requester of services

• Server, a provider of services

• Broker, an intermediary that locates an appropriate server to fulfill a client’s request,
forwards the request to the server, and returns the results to the client

• Client-side proxy, an intermediary that manages the actual communication with the
broker, including marshaling, sending, and unmarshaling of messages

• Server-side proxy, an intermediary that manages the actual communication with the
broker, including marshaling, sending, and unmarshaling of messages

Achieving Quality Attributes

173
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Broker Pattern Solution – 2

Relations: The attachment relation associates clients (and, optionally, client-side

proxies) and servers (and, optionally, server-side proxies) with brokers.

Constraints: The client can only attach to a broker (potentially via a client-side

proxy). The server can only attach to a broker (potentially via a server-side proxy).

Weaknesses:

• Brokers add a layer of indirection, and hence latency, between clients and servers, and

that layer may be a communication bottleneck.

• The broker can be a single point of failure.

• A broker adds up-front complexity.

• A broker may be a target for security attacks.

• A broker may be difficult to test.

Achieving Quality Attributes

174
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pipe-and-Filter Pattern

Context: Many systems are required to transform streams of discrete data items, from

input to output. Many types of transformations occur repeatedly in practice, so it is

desirable to create these as independent, reusable parts.

Problem: Such systems need to be divided into reusable, loosely coupled components

with simple, generic interaction mechanisms. In this way, they can be flexibly combined

with each other. The components, being generic and loosely coupled, are easily reused.

The components, being independent, can execute in parallel.

Solution: The pattern of interaction in the Pipe-and-Filter pattern is characterized by

successive transformations of streams of data. Data arrives at a filter’s input port(s), is

transformed, and then is passed via its output port(s) through a pipe to the next filter. A

single filter can consume data from, or produce data to, one or more ports.

Achieving Quality Attributes

175
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pipe-and-Filter Pattern Example
Achieving Quality Attributes

176
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pipe-and-Filter Pattern Solution

Overview: Data is transformed from a system’s external inputs to its external outputs

through a series of transformations performed by its filters connected by pipes.

Elements:

• Filter, which is a component that transforms data read on its input port(s) to data written on

its output port(s).

• Pipe, which is a connector that conveys data from a filter’s output port(s) to another filter’s

input port(s). A pipe has a single source for its input and a single target for its output. A pipe

preserves the sequence of data items, and it does not alter the data passing through.

Relations: The attachment relation associates the output of filters with the input of

pipes and vice versa.

Constraints:

• Pipes connect filter output ports to filter input ports.

• Connected filters must agree on the type of data being passed along the connecting pipe.

Achieving Quality Attributes

177
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Patterns and Quality Attributes
Worksheet

Achieving Quality Attributes

Buildability Security Interoperability

Modifiability Testability Availability

Reusability Usability Safety

Portability Subsetability Performance

Reliability Dependability

Others?

Discuss with your group which quality attributes are likely to be

positively or negatively affected by the use of the Layers pattern in

designing an architecture.

Present your results.

178
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Patterns Vary in Scale and Abstraction

Because patterns cover various ranges of scale and are applied at various levels of

abstraction, it is sometimes useful to broadly classify them as

• architectural patterns – express a fundamental structural organization schema for

software systems. An architectural pattern provides a set of predefined major architectural

elements, specifies their responsibilities, and includes rules and guidelines for organizing

the relationships between them.

• design patterns – provide a scheme for refining the major architectural elements of a

software system or the relationships between them. A design pattern describes a

commonly recurring structure of communicating elements that solves a general design

problem within a particular context.

• idioms – are patterns specific to a programming language. An idiom describes how to

implement particular aspects of components or the relationships between them using

the features of the given language.

Note that there is overlap and ambiguity in these definitions.

Achieving Quality Attributes

179
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pattern Benefits

Patterns

• provide solutions to recurring design problems

• document existing, well-proven design expertise

• provide a common vocabulary and understanding for design principles

• provide a means to augment software architecture documentation

• support construction of software with predictable properties

• help build and manage complex and heterogeneous software architectures

Achieving Quality Attributes

180
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pattern Resources

There is no complete list or definitive source of patterns.

Some of the many excellent pattern resources include

• your textbook, Chapter 13

• other textbooks

- Pattern-Oriented Software Architecture, Volumes 1–5, New York: Wiley,

1996–2007, Buschmann et al.

- Design Patterns: Elements of Reusable Object-Oriented Software, Boston:

Addison-Wesley, 1994, Gamma et al.

• Websites

- http://www.hillside.net

- http://www.soapatterns.org

Achieving Quality Attributes

181
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 1

Your team has been assigned the task of designing a messaging infrastructure for a system that

supports appraisal brokering for commercial and residential properties.

Using the worksheets on the following pages,

Achieving Quality Attributes

Read the problem statement.

Identify and determine the relative importance of quality attribute requirements.

Read about and discuss the Messaging, Publisher-Subscriber, and SOA patterns.

Discuss the benefits and liabilities of each pattern.

Select the pattern that you feel will best meet system requirements.

Discuss how you would instantiate the selected pattern.

Note any tradeoffs that result from the selected pattern and how you would instantiate it.

Prepare a sketch of your proposed design.

Record any assumptions you have made.

Present your results.

182
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 2
Worksheet

Problem Statement

Our company, BizCo, would like to establish itself as an industry leader in

brokering appraisals for commercial and residential properties. One step toward

accomplishing this goal is to ensure that our main office has more detailed and

timely information about the data entered and the activities that occur at our

branch offices.

Achieving Quality Attributes

Read the problem statement.

183
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 3
Worksheet

Problem Statement (continued)

The workflow at branch

offices typically proceeds

as follows:

Achieving Quality Attributes

184
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 4
Worksheet

Problem Statement (continued)

Achieving Quality Attributes

Business Process Description

Service Agreement Management Establishes and records service agreements between

BizCo and lenders/appraisers.

Appraisal Request Management Accepts and records incoming appraisal requests. Routes

requests for commercial or residential processing as

appropriate.

Commercial Appraisal Processing Pairs commercial appraisal requests with appraisers.

Routes requests to appraisers.

Residential Appraisal Processing Pairs residential appraisal requests with appraisers. Routes

requests to appraisers.

Appraisal Fulfillment Performs and records the results of property appraisals.

Billing Bills lenders and pays appraisers for appraisal services

rendered according to established service agreements.

185
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 5
Worksheet

Problem Statement (continued)

BizCo’s main office is located in

Pittsburgh, PA, with branch offices

throughout the United States.

The workflow at each branch office

is supported by three systems—the

Commercial Property System

(CPS), the Residential Property

System (RPS), and the Brokerage

Billing System (BBS)—as follows:

Achieving Quality Attributes

CPS RPS BBS

Appraisal Request Management x* x

Commercial Appraisal Processing x

Residential Appraisal Processing x

Appraisal Fulfillment x x

Billing x

Service Agreement Management x

* “X” indicates supported by/supports

186
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 6
Worksheet

Problem Statement (continued)

Branch offices also use CPS, RPS, and BBS biweekly to create hard-copy reports that summarize
brokerage activities. The reports are sent via courier to the main office for review. Although we would like
to have direct, more extensive, and daily access to data and information related to brokerage activities,
these systems are currently standalone and unable to interact with other systems within a branch or
external to a branch.

To rectify this situation, we intend to develop a software system called the Brokerage Information System
(BIS) that will provide detailed data and activity reports based on information acquired directly from CPS,
RPS, and BBS.

BIS will allow users at our main office to display reports on

• branch office, lender, and appraiser business addresses and contacts

• contract terms and conditions for lenders and appraisers

• appraisal requests submitted, assigned, and fulfilled

• brokerage activities across and for individual branch offices

• brokerage activities across and for individual lenders, appraisers, and brokers

• accounts receivable

Achieving Quality Attributes

187
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 7
Worksheet

Problem Statement (continued)

Our business goals include

• establishing BizCo as an industry leader in brokering appraisals for commercial and

residential properties

• increasing our market share of brokerage services

• dramatically decreasing our response time to market conditions

• providing direct and secure access to brokerage information 24/7

• making it easy to collate and understand brokerage information

Achieving Quality Attributes

188
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 8
Worksheet

Problem Statement (continued)

Our chief architect has already

decided on a layered architecture as

a module structure for the system.

Achieving Quality Attributes

189
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 9
Worksheet

Problem Statement (continued)

Achieving Quality Attributes

Layer Description

User Interface Allows users to select, customize, and display

brokerage data and activity reports.

Business Logic Interacts with remote services to collect data and

collates the data into brokerage reports.

Message Infrastructure Provides access to remote services.

Services A collection of services that provide brokerage data.

CPS, RPS, and BBS will provide these services.

190
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 10
Worksheet

Problem Statement (continued)

Achieving Quality Attributes

Service Providers Description

CPS Services requests for data about appraisal requests submitted,

assigned, and fulfilled for commercial properties including

request details, lender/appraiser assignments, and status.

RPS Services requests for data about appraisal requests submitted,

assigned, and fulfilled for residential properties including

request details, lender/appraiser assignments, and status.

BBS Services requests for data about branch office, lender, and

appraiser business addresses and contacts, contract terms

and conditions, and accounts receivable.

191
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 11
Worksheet

Problem Statement (continued)

Your team has been assigned to propose a design for the Messaging

Infrastructure layer, which allows the Business Logic layer to communicate with

remote services.

Select from the following patterns:

• Messaging

• Publisher-Subscriber

• SOA

Discuss the patterns; consider their pros, cons, and tradeoffs from a quality

attributes perspective; sketch a design that contains enough information to

support analysis; and present your results.

These patterns are presented in detail in the following slides.

Achieving Quality Attributes

192
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 12
Worksheet

Achieving Quality Attributes

Relative Importance Quality Attribute

Identify and determine the relative importance (1 to 10, where 1 is most

important) of quality attribute requirements for the messaging infrastructure.

(Hint: Revisit the business goals. Also, use your knowledge of and experience

with similar systems.)

193
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 13
Worksheet

Context Some distributed systems are composed of services that were developed independently. To

form a coherent system, however, these services must interact reliably, but without incurring

overly tight dependencies on one another.

Problem Integrating independently developed services, each having its own business logic and value,

into a coherent application requires reliable collaboration between services. However, since

services are developed independently, they are generally unaware of each other’s specific

functional interfaces. Furthermore, each service may participate in multiple integration

contexts, so using them in a specific context should not preclude their use in other contexts.

Solution Connect the services via a message bus that allows them to transfer data messages

asynchronously. Encode the messages (request data and data types) so that senders and

receivers can communicate reliably without having to know all the data type information

statically.

Achieving Quality Attributes

Read and discuss the Messaging pattern.

194
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 14
Worksheet

Achieving Quality Attributes

Read and discuss the Messaging pattern. (continued)

Behavior Trace Key: UML Diagram

195
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 15
Worksheet

Context Components in some distributed applications are loosely coupled and operate largely independently.

If such applications need to propagate information to some or all of their components, a notification

mechanism is needed to inform the components about state changes or events that affect or

coordinate their own computation.

Problem The notification mechanism should not couple application components too tightly, or they will lose

their independence. Components want to know only that another component is in a specific state,

not which specific component is involved. Components that disseminate events often do not care

which other components want to receive the information. Components should not depend on how

other components can be reached or on their specific location in the system.

Solution Define a change propagation infrastructure that allows publishers in a distributed application to

disseminate events that may be of interest to others. Notify subscribers interested in those events

whenever such information is published.

Achieving Quality Attributes

Read and discuss the Publisher-Subscriber pattern.

196
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 16
Worksheet

Achieving Quality Attributes

Read and discuss the Publisher-Subscriber pattern. (continued)

Key: UML DiagramBehavior Trace

197
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 17
Worksheet

Context It is often necessary to build complex business processes by wiring together a set of

relatively simple services in a dynamic way.

Problem Routing messages through a distributed system based on filtering rules is inefficient

because messages are sent to every destination’s filter and router for inspection and

rules resolution, whether or not the message could be processed.

Solution Define a message router that includes both filtering rules and knowledge about the

processing destination paths so that messages are delivered only to the processing

endpoints that can act on them. Unlike filters, message routers do not modify the

message content and are concerned only with message destination.

Achieving Quality Attributes

Read and discuss the Dynamic Routing pattern.

198
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 18
Worksheet

Achieving Quality Attributes

Key: UML Diagram

Read and discuss the Dynamic Routing pattern. (continued)

Behavior Trace

199
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 19
Worksheet

Benefits Liabilities

Messaging

Services can interact without having

to deal with networking and service

location concerns.

Lack of statically typed interfaces

makes it hard to validate system

behavior prior to runtime.

Asynchronous messaging allows

services to handle multiple requests

simultaneously without blocking.

Service requests are encapsulated

within self-describing messages that

require extra time and space for

message processing.

Allows services to participate in

multiple application integration and

usage contexts.

Achieving Quality Attributes

Discuss the benefits and liabilities of each pattern.

200
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 20
Worksheet

Benefits Liabilities

Publisher-

Subscriber

Publishers can asynchronously

transmit events to Subscribers without

blocking.

Publishing can cause unnecessary overhead

if subscribers are interested in only a specific

type of event.

Asynchronous communication

decouples Publishers from

Subscribers, allowing them to be

active and available at different times.

Filtering events to decrease event publishing

and notification overhead can result in other

costs (e.g., decrease in throughput,

unnecessary notifications, breakdown of

anonymous communication model).

Publishers and Subscribers are

unaware of each other’s location and

identity.

Achieving Quality Attributes

Discuss the benefits and liabilities of each pattern (continued).

201
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 21
Worksheet

Benefits Liabilities

Dynamic

Routing

Services do not need to deal with

networking concerns or know each other’s

locations since all requests are handled

through the message router.

Performance overhead.

Communications can be optimized as

services dynamically become available

or unavailable.

Single point of failure.

Efficient, predictive routing. Potentially complex, unintuitive behavior

when rules conflict.

Achieving Quality Attributes

Discuss the benefits and liabilities of each pattern (continued).

202
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Select one of the three patterns that you feel will best meet the messaging

infrastructure requirements.

Discuss how you would instantiate the selected pattern.

Note any tradeoffs that result from the selected pattern and how you would

instantiate the pattern.

Prepare a sketch of your proposed design.

Record any assumptions you have made.

Group Exercise: Designing with Patterns – 22
Worksheet

Achieving Quality Attributes

203
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Designing with Patterns – 23
Worksheet

Achieving Quality Attributes

Present the following:

• quality attributes in relative order of importance

• which pattern your group selected

• what tradeoffs result from the selected pattern and how you

would instantiate the pattern

• sketch of your proposed design

• assumptions you have made

204
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Tactics Defined – 1

Patterns are composed from fundamental design decisions we call tactics.

In other words, tactics are the “building blocks” of design from which architectural patterns

are created.

But what exactly is a tactic?

Achieving Quality Attributes

205
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Tactics Defined – 2

The software architecture for a system is a

collection of design decisions.

• Some decisions are made to ensure we achieve

the system’s functional requirements.

• Other decisions are made to ensure we achieve

the system’s quality attribute requirements.

- These decisions are called tactics.

- Tactics are influential in controlling quality attribute

responses.

Achieving Quality Attributes

Tactics to
Control

Response

Stimulus Response

206
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Tactic Defined – 3

Each tactic is a design option for the architect.

For example, which of the following tactics is a design

option an architect might choose to promote the availability

of a system?

Achieving Quality Attributes

Restrict dependencies

Passive redundancy

Maintain audit trail

Condition monitoring

Maintain system model

207
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Tactics Categorized by Quality Attributes
Achieving Quality Attributes

Testability

Tactics

Completion of

an increment
Faults detected

Security TacticsAttack
System detects, resists, or

recovers from attacks

Performance

Tactics
Events arrive

Response generated within

time constraints

Modifiability

Tactics
Changes arrive

Changes made, tested, and

deployed within time and

budget

Availability

Tactics
Fault

Fault masked or

repair made

Usability TacticsUser request
User given appropriate

feedback and assistance

Interoperability

Tactics

Interoperation

request arrives
Request correctly handled

208
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Availability Tactics – 1

Detect faults

• Ping/echo: asynchronous request/response message pair exchanged between

nodes, used to determine reachability and the round-trip delay through the

associated network path

• Monitor: a component used to monitor the state of health of other parts of the

system. A system monitor can detect failure or congestion in the network or other

shared resources, such as from a denial-of-service attack.

• Heartbeat: a periodic message exchange between a system monitor and a

process being monitored

• Timestamp: used to detect incorrect sequences of events, primarily in distributed

message-passing systems

• Condition monitoring: checking conditions in a process or device, or validating

assumptions made during the design

Achieving Quality Attributes

209
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Availability Tactics – 2

Detect faults

• Sanity checking: checks the validity or reasonableness of a component’s

operations or outputs; typically based on knowledge of the internal design, the

state of the system, or the nature of the information under scrutiny

• Voting: to check that replicated components are producing the same results.

Comes in various flavors: replication, functional redundancy, analytic redundancy

• Exception detection: detection of a system condition that alters the normal flow

of execution, e.g., system exception, parameter fence, parameter typing, timeout

• Self-test: procedure for a component to test itself for correct operation

Achieving Quality Attributes

210
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Availability Tactics – 3

Recover from faults (preparation and repair)

• Active redundancy (hot spare): All nodes in a protection group receive and process
identical inputs in parallel, allowing redundant spare(s) to maintain synchronous
state with the active node(s).

- A protection group is a group of nodes where one or more nodes are “active,” with the
remainder serving as redundant spares.

• Passive redundancy (warm spare): Only the active members of the protection
group process input traffic; one of their duties is to provide the redundant spare(s)
with periodic state updates.

• Spare (cold spare): Redundant spares of a protection group remain out of service
until a failover occurs, at which point a power-on-reset procedure is initiated on the
redundant spare prior to its being placed in service.

• Exception handling: dealing with the exception by reporting it or handling it,
potentially masking the fault by correcting the cause of the exception and retrying

• Rollback: reverting to a previous known good state, referred to as the “rollback line”

Achieving Quality Attributes

211
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Availability Tactics – 4

Recover from faults (preparation and repair)

• Software upgrade: in-service upgrades to executable code images in a

manner that does not affect service

• Retry: where a failure is transient, retrying the operation may lead to success

• Ignore faulty behavior: ignoring messages sent from a source when it is

determined that those messages are spurious

• Degradation: maintains the most critical system functions in the presence of

component failures, dropping fewer critical functions

• Reconfiguration: reassigning responsibilities to the resources left functioning,

while maintaining as much functionality as possible

Achieving Quality Attributes

212
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Availability Tactics – 5

Recover from faults (reintroduction)

• Shadow: operating a previously failed or in-service upgraded component in a

“shadow mode” for a predefined time prior to reverting the component back to

an active role

• State resynchronization: partner to active redundancy and passive

redundancy in which state information is sent from active to standby

components

• Escalating restart: recover from faults by varying the granularity of the

component(s) restarted and minimizing the level of service affected

• Non-stop forwarding: splits functionality into supervisory and data. If a

supervisor fails, a router continues forwarding packets along known routes

while protocol information is recovered and validated.

Achieving Quality Attributes

213
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example: Availability Tactics – 6

Prevent faults

• Removal from service: temporarily placing a system component in an out-of-service

state for the purpose of mitigating potential system failures

• Transactions: bundling state updates so that asynchronous messages exchanged

between distributed components are atomic, consistent, isolated, and durable

• Predictive model: monitoring the state of health of a process to ensure that the system

is operating within nominal parameters; taking corrective action when conditions are

detected that are predictive of likely future faults

• Exception prevention: preventing system exceptions from occurring by masking a

fault, or preventing them via smart pointers, abstract data types, or wrappers

• Increase competence set: designing a component to handle more cases—faults—as

part of its normal operation

Achieving Quality Attributes

214
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Applying Tactics
Worksheet

Tactic descriptions can be found in your textbook as follows:

Achieving Quality Attributes

Choose one of the following quality attributes of the Brokerage Information System, and

read the descriptions for the associated tactics in your textbook:

Availability: p. 87–95 Security: p. 150–154

Interoperability: p. 110–112 Testability: p. 164–168

Modifiability: p. 121–125 Usability: p. 177–181

Performance: p. 135–141

Discuss the tactics with your group.

Which tactics would you choose to improve your design of the messaging infrastructure

for the system?

What tradeoffs and issues arise from your selection of tactics?

Present your results.

215
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The Relationship Between Tactics and Patterns

As we said earlier, tactics are the “building blocks” of design from which

patterns are created.

Patterns typically employ several different tactics to promote various

quality attributes.

• For example, a pattern that supports availability will likely use one or

more redundancy tactics to achieve availability.

Achieving Quality Attributes

216
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise: Tactics and Patterns
Worksheet

Achieving Quality Attributes

Consider the Layers pattern, which promotes quality attributes such

as portability, testability, modifiability, and reusability.

Review the tactics for modifiability.

Which modifiability tactics does the Layers pattern employ to

achieve modifiability?

217
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Tactics Resources

Get more information about tactics in

• your textbook: Software Architecture in Practice, Third Edition.

• SEI technical reports, including

• Modifiability Tactics (CMU/SEI-2007-TR-002)

• Realizing and Refining Architectural Tactics: Availability (CMU/SEI-2009-TR-006)

• articles, including

• W. Wu, T. Kelly, “Safety Tactics for Software Architecture Design,” Proc. 28th Annual International
Computer Software and Applications Conference, 2004.

• S. Kim, D. Kim, L. Lu, S. Park, “Quality-Driven Architecture Development Using Architectural
Tactics,” Journal of Systems and Software, 82, 2009.

• N. Harrison, P. Avgeriou, “How Do Architecture Patterns and Tactics Interact? A Model and
Annotation,” Journal of Systems and Software, 83, 2010.

• J. Ryoo, P. Laplante, R. Kazman, “Revising a Security Tactics Hierarchy Through Decomposition,
Reclassification, and Derivation,” Proc. International Conference on Software Security and
Reliability, 2012.

Achieving Quality Attributes

218
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Attribute-Driven Design

The Attribute-Driven Design (ADD) method, developed by the SEI, is an approach

to defining a software architecture that bases the decomposition process on the

quality attributes that the software must fulfill.

ADD follows a recursive decomposition process in which, at each stage in the

decomposition, design concepts (tactics, patterns, etc.) are chosen to satisfy a set

of quality attribute scenarios.

ADD is now in its third major revision, ADD 3.0.

Achieving Quality Attributes

219
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ADD Method’s Inputs and Outputs

Inputs include these

architectural drivers:

• design purpose

• quality attribute requirements

• design constraints

• functional requirements

• architectural concerns

Outputs include

• first several levels of module

decomposition

• various other views of the system as

appropriate

• set of elements with assigned

functionalities and the interactions

among the elements

• the rationale associated with the

decisions made

Achieving Quality Attributes

220
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The Attribute-Driven Design Method

ADD is an iterative design method.

In each iteration, you

• choose a part of the system to design

• marshal all the architectural drivers for that part

• create and test (analyze) a design for that part

ADD does not result in a complete design. Its outputs are

• a set of design decisions documented as structures and interfaces

• a description of interactions and information flows among the containers

• the rationale for the decisions made

It does not produce an API or signature for containers.

Achieving Quality Attributes

221
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ADD Inputs and Outputs
Achieving Quality Attributes

Drivers

• Design purpose

• Quality attributes

• Primary functionality

• Architectural concerns

• Constraints

Software architecture

design decisions

• Structures

• Interfaces

• Rationale

ADD

222
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The Steps of ADD
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

223
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Step 1: Review Inputs
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

Before starting with

design, ensure that

there is clarity on the

overall design problem

that needs to be solved

224
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Step 2: Establish Iteration Goal
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

The design problem is

divided into several

sub-problems.

An iteration starts by

deciding which sub-

problem to address.

225
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Steps 3–5: Choose and Instantiate Elements
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

3 types of decisions
are made to address
the sub-problem:

1. Select the parts that
need to be
decomposed

2. Identify and select
existing solutions
that support the
decomposition

3. Create elements
from the existing
solution, and
establish their
responsibilities and
interfaces

226
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Step 6: Sketch Views
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

The “blueprint” is

refined. This may be

done in parallel with

Step 5.

Note: This is not full-

blown documentation

but rather sketches.

227
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Step 7: Perform Analysis
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

Decisions made at this

point are analyzed,

along with the

advances in the

overall design process,

to decide if more

iterations are

necessary

228
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ADD Output/Iteration
Achieving Quality Attributes

Design purpose
Primary functional

requirements

Quality attribute

scenarios
Constraints

Architectural

concerns

Step 1: Review Inputs

Step 2: Establish iteration goal by selecting drivers

Step 3: Choose one or more elements of the system to refine

Step 4: Choose one or more design concepts that satisfy the

selected drivers

Step 5: Instantiate architectural elements, allocate

responsibilities, and define interfaces

Step 6: Sketch views and record design decisions

Step 7: Perform analysis of current design, and review

iteration goal and achievement of design purpose

It
e
ra

te
 i
f
n
e
c
e
s
s
a
ry

F
ro

m
 p

re
v
io

u
s
 r

o
u
n
d
 o

f
it
e
ra

ti
o
n

s
 o

r
fr

o
m

 e
x
is

ti
n
g
 s

y
s
te

m

Driver

Process step

Architecture

design

Precedence

Artifact

flow(Refined) Software

architecture design

The design is

produced.

Note: This may be only

a partial architecture

design and is not Big

Design Up Front!

229
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ADD Resources

Resources for more information about ADD include

• books

–Software Architecture in Practice describes ADD 2.0.

–H. Cervantes, R. Kazman, Designing Software Architectures: A Practical Approach,

Addison-Wesley, 2016, describes ADD 3.0 in detail.

• course

–The SEI Software Architecture Design and Analysis course provides an

in-depth look at ADD 3.0 and gives students hands-on experience with the method.

Achieving Quality Attributes

230
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary

There are six major categories of design concepts:

• design principles

• reference architectures

• externally developed components

• deployment patterns

• architectural design patterns

• tactics

Architectural patterns represent the collective experience of skilled software engineers in solving

recurring design problems.

Tactics are fundamental design decisions that influence the control of quality attribute responses.

Attribute-Driven Design is a method for designing an architecture that bases the decomposition

process on the architectural drivers that the software must meet.

Achieving Quality Attributes

231
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

DOCUMENTING SOFTWARE

ARCHITECTURES

232
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

This module will familiarize participants with

• architectural views and how they are used to document

software architectures

• various types of views, why they are useful, and when to

use them

• notations often used to describe architectures

• what a software architecture document should contain

Documenting Software Architectures

233
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture structures the system and the project that

develops it.

• It defines the work assignments.

• It is the primary carrier of quality attributes.

• It is the best artifact for early analysis.

• It is the key to post-deployment maintenance and mining.

This blueprint must be understood if it is to be used. It must

be communicated if it is to be understood.

Documentation speaks for the architect, today, tomorrow,

and 20 years from now.

Why Document an Architecture?
Documenting Software Architectures

234
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture Documentation Also Contributes to
Architecture Design

Documentation establishes the set of design decisions that must be made along

the way to establishing and maintaining the architecture.

Documentation also clarifies the line between architectural and

non-architectural design decisions.

• Non-architectural design is the term preferred over detailed design.

Architectural decisions can be quite detailed!

• Architectural design decisions are those that affect the system’s ability to

deliver on its behavioral and quality attribute goals.

Documenting Software Architectures

235
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Is Architecture Documentation Used For?

Construction: Documentation tells the developers what to build, how the pieces

should behave, and how they should fit together.

Analysis: Analysts will use the documentation to assess the architecture for its

ability to its job, particularly to provide the required behavior and quality attributes.

Analyzing the documented architecture can uncover risks and problems long

before the design is committed to code.

Education: Someone new to the project or unfamiliar with the solution approach

can come up to speed using the architecture documentation.

Documenting Software Architectures

236
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Views: An Important Concept for Documentation

An architecture is a multidimensional construct, too involved to be seen all at once.

Systems are composed of many structures that show

• modules, their composition/decomposition, and mapping to code units

• processes and how they synchronize

• programs and how they call or send data to each other

• how software is deployed on hardware

• how teams cooperate to build the system

• how components and connectors work at runtime

• …

A view is a representation of a structure. We use views to manage complexity by

separating concerns.

Documenting Software Architectures

237
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

View-Based Documentation

Views give us our basic

principle of architecture

documentation:

• Documenting a software

architecture is a matter of

documenting the relevant

views and then adding

information that applies to

more than one view.

Documenting Software Architectures

238
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Three Types of Views

Recall that a view is a representation of a structure in the software.

Choosing to use a style or pattern usually leads to the creation and “filling out” of a

software structure.

Recall that we showed three kinds of software structures.

Therefore, we have three kinds of views. Different kinds of views show different kinds of

information:

1. Module views show how the system is structured as a set of code units.

2. Component-and-connector views show how the system is structured as a set of

elements with runtime behaviors and interactions.

3. Allocation views show how the system relates to non-software structures in its

environment.

Every view contains information from at least one of these categories.

Documenting Software Architectures

239
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Information in a View

A view’s primary function is to show the structure that it represents.

Hence, a view will show the elements that are in the structure and the relationships

among them.

A view will also explain what the elements are, what their responsibilities are, and what

their important properties are.

Properties are values used to describe the elements to help convey understanding and

aid analysis. Properties are often quality-of-service values, such as an element’s

performance or reliability characteristics.

Architects can choose the properties they wish to document based on what the

document’s readers will wish to know.

Documenting Software Architectures

240
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Views

Elements: modules. A module is a code unit that implements a set of responsibilities.

Relations: Relations among modules include

• A is part of B. This defines a part-whole relation among modules.

• A depends on B. This defines a dependency relation among modules.

• A is a B. This defines specialization and generalization relations among modules.

Properties: Properties of a module usually include a name, responsibilities, and the

visibility of the module and its interface.

Documenting Software Architectures

241
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Are Module Views Used For?

Construction: These are the blueprints for the code.

Modules are assigned to teams for implementation and are often the basis for subsequent

design (e.g., that of interfaces). Subsets and deployment packages are built using module

styles.

Analysis: Traceability and impact analysis rely on implementation units. Project

management, budgeting, planning, and tracking often use modules.

Education: A software developer can learn the development project’s structure by

understanding module views.

Documenting Software Architectures

242
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Component-and-Connector (C&C) Views

Elements: components and connectors

• Components are principal units of runtime interaction and data stores.

• Connectors are interaction mechanisms.

Relations: attachment of components’ ports to connectors’ roles (interfaces with

protocols)

Properties: Properties of a component or connector often include a name and runtime

quality-of-service information to facilitate analysis or prediction of runtime quality

attributes.

Documenting Software Architectures

243
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Are C&C Views Used For?

Construction: for specifying the behavior that elements must exhibit

Education: as a starting point for the architect to show how the system works

Analysis: for reasoning about runtime system quality attributes such as performance,

security, and reliability

Documenting Software Architectures

y = C (B (A(x)))x A B C y

244
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Allocation Views

Elements:

• software elements (as defined in module or C&C styles)

• environment elements

Relations: Software elements are “allocated to” environment elements.

Properties: Properties documented in an allocation view are “requires” properties of

software elements and “provides” properties of the environment elements. If the

properties are compatible, then the allocation is a sound one.

Documenting Software Architectures

245
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Applying Views to Heterogeneous Systems

Systems are usually built by employing several different styles or patterns.

Architectures are almost guaranteed to use more than one architectural style.

As a result, systems usually contain large numbers of diverse types of elements. This

heterogeneity might show up in the following ways:

1. Different “areas” of the system (e.g., different subsystems) might use different styles or

patterns and be documented in different views.

2. An element of one style might be decomposed into elements arranged in another style.

For example, a service in an SOA view might be designed internally to use the shared-

data style and documented using a shared-data view.

3. The architect might have combined two styles or patterns to solve a design problem.

The view will show element types and relation types from each.

Views help sort out these combinations and aid understanding.

Documenting Software Architectures

246
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Other Information in a View

Architects must also be concerned with documenting

• interfaces: Elements cannot interact each other except through their interfaces.

Interfaces must be documented as part of the architecture. Interfaces consist of syntax

plus semantics—not just APIs!

• rationale: Documenting why the architect made the decisions he/she did can save

critical time in the future, when the system is ready to evolve and the original architect

is long gone.

• variability in architectures, such as components that are plug-replaceable or optional

• dynamic architectures: components and connectors that change at runtime

• context: the external environment and how it relates to our system

• behavior: How do the elements behave when the system runs? Structure just shows

connections; behavior shows how and when those connections “fire.”

Documenting Software Architectures

247
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Behavior: Beyond Structure
Documenting Software Architectures

Structural diagrams show

all the potential interactions

among software elements.

Behavioral diagrams describe

specific patterns of interaction—

the system’s response to stimuli.

248
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Two Classes of Languages for Documenting Behavior

1. Trace-oriented languages

• describe how the system reacts when a specific stimulus arrives and the system

is in a specific state

• are easy to use because of their narrow focus

• do not completely capture behavior unless you collect all possible traces

2. Comprehensive languages

• show the complete behavior of a system

• are usually state based (e.g., statecharts)

• can infer all traces using a static model―even impossible traces

• support the documentation of alternatives

Both can show the behavior of the whole system, parts of the system, or

individual elements.

Documenting Software Architectures

249
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Which Is Which?

Trace-oriented languages

• use cases*

• communication diagrams*

• sequence diagrams*

• message sequence charts

• activity diagrams*

• timing diagrams*

• Business Process Execution Language

(BPEL)

• …

Documenting Software Architectures

* available in UML

Comprehensive languages

• statecharts*

• SDL diagrams

• Z specifications

• some ADLs

• …

250
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Establish it, make sure that your

documents follow it, and make sure

that readers know what it is.

A standard organization

• helps the reader navigate and find

information

• helps the writer place information and

measure the work left to be done

• lets the writer record information as

soon as it is known, in whatever order it is discovered

• embodies completeness rules and helps with validation

Use a Standard Organization for Your Architecture
Document

Documenting Software Architectures

251
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example Architecture
Document

Documenting Software Architectures

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

252
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example Architecture
Document

Documenting Software Architectures

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

253
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Documenting Software Architectures

254
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example Architecture
Document

Documenting Software Architectures

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

255
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Documenting Software Architectures

256
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example Architecture
Document

Documenting Software Architectures

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

257
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Documenting Software Architectures

258
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example Architecture
Document

Documenting Software Architectures

https://wiki.sei.cmu.edu/sad/index.php/The_Adventure_Builder_SAD

259
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Notations for Architecture Views

Notations for documenting views differ in their degree of formality. There are three main
categories of notation:

• Informal notations: Views are depicted graphically using general-purpose diagramming tools and
visual conventions chosen for the system at hand. The semantics of the description are characterized
in natural language and generally cannot be formally analyzed.

• Semi-formal notations: Views are expressed in a standardized notation that prescribes graphical
elements and rules of construction but does not provide a complete semantic treatment of the
meaning of those elements. Rudimentary analysis can be applied to determine whether a description
satisfies syntactic properties.

• Formal notations: Views are described in notation that has a precise (usually mathematically based)
semantics. Formal analysis of both syntax and semantics is possible.

More formal notations take more time and effort to create, but they repay this effort in
reduced ambiguity and better opportunities for analysis.

Documenting Software Architectures

260
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Notations for Module Views’ Primary Presentations

Informal:

• box-and-line drawings (Nesting can represent
“is part of” relations.)

• tables or lists (Indenting can represent “is part
of” relations.)

Semi-formal: UML class diagrams and

package diagrams

Documenting Software Architectures

Key:
UML 2.0

Is Part Of Depends On Is a

A C E

B D F

Composition Dependency Generalization

Is Part of Depends on

261
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Elements: modules

Relations: “is part of”

• The criteria for decomposition vary:

- achievement of modifiability

- build versus buy

- software product lines: common versus unique parts

- developers’ skills

Topology: A child can have only one parent.

What it’s for:

• assigning responsibilities to modules as a prelude to
subsequent, downstream design

• conducting change/impact analysis

• developing work assignments

• developing unit testing

Decomposition View
Documenting Software Architectures

A

B C

D E

B2

E1

C2C1B1

E2
E3

262
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Decomposition View Primary Presentation: UML
Documenting Software Architectures

Key:
UML 2.0

263
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Uses View

Elements: modules

Relations: “uses,” a specialization of “depends on”

• A uses B if A depends on the presence of a correctly functioning B to satisfy its

(A’s) own requirements.

Topology: no constraints (However, loops can cause problems with incremental

system delivery.)

What it’s for:

• planning incremental development

• use in system extensions and subsets

• debugging and testing

• gauging the effects of specific changes

Documenting Software Architectures

264
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Uses View Primary Presentation: UML
Documenting Software Architectures

Key:
UML 2.0

265
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Generalization View

Elements: modules

Relations: generalization, an “is a” relation

Properties: abstract? (i.e., is this an interface without a complete implementation?)

Topology:

• A module can have multiple parents.

• Cycles are prohibited.

What it’s for:

• basis for object-oriented designs

• incrementally describing evolution and extension

• capturing commonalities, with variations as children

• supporting reuse

Documenting Software Architectures

266
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Generalization View Primary Presentation: UML
Documenting Software Architectures

267
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layered View – 1

Elements: layers, a virtual machine

Relations: “allowed to use,” a specialization of the

“depends on” relation

• Recall that A uses B if A’s correctness depends on the presence

of a correct B.

• The relation is not necessarily transitive.

Topology:

• Every piece of software is assigned to exactly one layer.

• Software in a layer is allowed to use software in

{any lower layer, next lower layer}.

• Software in a layer {is, is not} allowed to use other software

in the same layer.

Documenting Software Architectures

A

B2B1 B3

C

268
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layered View – 2

What it’s for:

• promotes portability

• fielding subsets and incremental development

• separation of concerns

• promotes reusability

Variations:

• segmented layers: dividing a layer into segments (or submodules), with “allowed to

use” relations between those segments and segments from other layers

Documenting Software Architectures

A

B2B1 B3

C

269
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layered View Primary Presentation:
UML Packages

Documenting Software Architectures

Segmented
layer

270
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Layered View Primary Presentation:
Informal Notation

Documenting Software Architectures

Key:

Business

delegate

classes

Session facade business

components

CMP entity

beans

Input

processors

Portlet

presentation

nodes (html,

JSP, servlet)

Web Services

Layer

Pipeline

components

Apache Axis

framework

XML helper

classes (from

JAXB)

Portal Layer

Domain

Model

Layer

Business

Layer

Database

Layer
ATIA-M

Enterprise DB

WebLogic

Portal

framework

Library or

COTS module

Java

module

Database

Allowed to

use

Client

Layer

Axis

framework

Handlers

Value objects

Portal web

pages
UTMC thick client

Html, JSP,

Javascript

C# module

TDDC thick client

Service

objects

Helper

classes

Key:

Business

delegate

classes

Session facade business

components

CMP entity

beans

Input

processors

Portlet

presentation

nodes (html,

JSP, servlet)

Web Services

Layer

Pipeline

components

Apache Axis

framework

XML helper

classes (from

JAXB)

Portal Layer

Domain

Model

Layer

Business

Layer

Database

Layer
ATIA-M

Enterprise DB

WebLogic

Portal

framework

Library or

COTS module

Java

module

Database

Allowed to

use

Client

Layer

Axis

framework

Handlers

Value objects

Portal web

pages
UTMC thick client

Html, JSP,

Javascript

C# module

TDDC thick client

Service

objects

Helper

classes

271
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Notations for C&C Views’ Primary Presentations

Informal:

• box-and-line diagrams

• Most box-and-line diagrams showing runtime behavior are in fact attempting to be C&C

views.

Formal:

• architecture description languages such as Acme, Wright, UniCon, the Architecture

Analysis and Design Language (AADL), and Rapide

Semi-formal:

• UML

- not always a straightforward mapping

- major improvements in UML 2.0

Documenting Software Architectures

272
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Delegation
connector

1 to 5 instances of this port
(suggesting it can take up to 5

requests at a time)

Only 1 instance of this port

Port

Required
interface

Provided
interface

Component

Assembly
connector

Assembly
connectorDelegation

connector

Notations for C&C Views: UML 2.0
Documenting Software Architectures

Component

Provided
interface

Key:
UML 2.0

273
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Shared-Data View

Elements:

• component types: data stores and accessors

• connector types: data reading and writing

Relations: attachment

Properties: can include type of data, data-related performance properties,

and data distribution

Topology: The data store is attached to the data accessors

via connectors.

What it’s for: when there are multiple accessors of persistent data

Variations: Data store is a blackboard that announces updates to

interested subscribers.

Documenting Software Architectures

274
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Shared-Data View Primary Presentation: Informal
Notation

Documenting Software Architectures

275
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Service-Oriented Architecture
(SOA) View – 1

Elements:

• component types: service users, service providers,

ESB, registry of services

• connector types: service calls

(e.g., Simple Object Access Protocol [SOAP] messages)

Relations: attachment of a service call to a service endpoint

Properties: Security (e.g., authorization), cost, reliability,

performance, and other qualities of service can be associated with

services.

Documenting Software Architectures

276
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Service-Oriented Architecture
(SOA) View – 2

Topology:

• Service users are connected to service providers.

• Special components may intermediate the interaction

between service users and service providers:

- Registry of services: naming and location of services

- ESB: routing, data and format transformation, technology adapters

• A service user may also be a service provider.

What it’s for: Reasoning about

• how best to distribute applications across a system

• how well interoperability of components developed in different

languages and platforms will be achieved

• how external components and legacy systems will be integrated

Documenting Software Architectures

277
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

SOA View Primary Presentation: Informal Notation
Documenting Software Architectures

This example was adapted from the Java

Adventure Builder Reference application

(https://adventurebuilder.dev.java.net/).

278
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pipe-and-Filter View

Elements:

• component type: filter, which transforms data

• connector type: pipe, a unidirectional data conduit that

preserves the order and value of data

Relations: attachment of pipes to filters

Topology: Pipes connect filters. Further specializations of the

style may prohibit loops or branching.

What it’s for:

• systems in which data is transformed serially

• supporting functional composition data analysis

Documenting Software Architectures

279
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Pipe-and-Filter View Primary Presentation:
Informal Notation

Documenting Software Architectures

280
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Notations for Allocation Views’ Primary Presentations

Informal:

• box-and-line diagrams

• tables

• snapshots of tool interfaces that manage the allocations

Semi-formal:

• UML can show various kinds of allocation, such as software to hardware or

software to a file container.

Documenting Software Architectures

281
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Deployment View – 1

Elements:

• software element―usually processes from C&C views

• environmental element―computing hardware

Relations:

• “allocated to”―physical elements on which software resides

• “migrates to,” “copy migrates to,” and/or “execution migrates to” with

dynamic allocation

Documenting Software Architectures

282
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Deployment View – 2

Properties:

• requires property for software elements

- significant features required from hardware

• provides property of environment elements

- significant features provided by hardware

Topology: unrestricted

What it’s for: analysis of

• performance

• bandwidth utilization

• availability

• security

• purchasing options for hardware

Documenting Software Architectures

283
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Deployment View Primary Presentation:
Informal Notation

Documenting Software Architectures

284
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Deployment View Primary Presentation: UML
Documenting Software Architectures

<<deploy>> dependency shows
how artifacts are deployed onto

nodes

<<artifact>> denotes a file of any
kind (new in UML 2.0)

<<executionEnvironment>> is a node that
offers an environment for running specific

types of components (new in UML 2.0)

285
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implementation View – 1

Elements:

• software element―a module or component

• environmental element―configuration item; for example, a file or directory

Relations:

• containment―A configuration item is contained in another.

• “allocated to”―A module is allocated to a configuration item.

Documenting Software Architectures

286
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implementation View – 2

Properties:

• requires property for software element―usually requirements on the development or

production environments; for example, Java

• provides property of environment elements―characteristics provided by development

or production environments

Topology: configuration items are hierarchical, following “is contained in”

What it’s for:

• managing and maintaining files that correspond to software elements

• analyzing purchasing options for development or production environments

• defining deployment and production procedures

Documenting Software Architectures

287
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implementation View Primary Presentation:
Informal Notation

Documenting Software Architectures

288
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Implementation View Primary Presentation: UML
Documenting Software Architectures

<<manifest>> also
indicates a component

is inside an artifact

<<artifact>> denotes
a file (new in UML

2.0)

<<manifest>> indicates an
artifact is inside another

(new in UML 2.0)

289
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

And, finally, Marketecture

Marketecture is a one-page, typically

informal description of the architecture.

It shows major components and

their relationships.

It facilitates discussion and provides a

starting point for deeper analysis.

Documenting Software Architectures

290
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Remember that

Documenting a software architecture is a matter of

documenting the relevant views and then adding

information that applies to more than one view.

So we need to choose the views that

• are relevant to the stakeholders and

their intended use for the views

• reflect structures inherent in the

system

Choosing Views to Document
Documenting Software Architectures

291
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

A Method for Choosing the Views

1. Build a stakeholder/view table.

a. ROWS (x) enumerate the stakeholders.

b. COLUMNS (y) enumerate the set of styles that could apply

to the architecture being documented―the possible views.

c. Check the cell where x and y meet if stakeholder x needs

view y in order to do his/her job.

2. Combine views appropriately to reduce their number.

3. Prioritize and stage the documentation, based on need.

Documenting Software Architectures

292
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Documentation is for communicating information and

ideas. If the reader misunderstands because of

ambiguities, the documentation has failed.

Precisely defined notations and languages help avoid

ambiguity.

If your documentation uses a graphical language, always

include a key that either

• points to the language’s formal definition or

• gives the meaning of each symbol. (Don’t forget the

lines or arrows!)

If color or position is significant, indicate how.

Always Use a Notation Key
Documenting Software Architectures

Key:

EJB Tier Backend TierClient Tier

Façade

SLSB

Web Tier

Oracle

Database

HTML and

JavaScript

web com-

ponent

Data

repository

HTTP-based

communication
File I/O

Portal

web

page

CMP or

BMP entity

bean

Front

Controller

(servlet)

EJB

Java method

call (local)

http

response

logical tier

(not a

component)

http

request

Result

Page

(JSP or HTML)

forward or

sendRedirect Product

Files

JDBC

Thick

client

MS.NET Windows

application

Axis + ATIA

services

(servlet)

SOAP request
(web services URL)

SOAP

response

293
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Exercise

Consider the architecture sketch(es) that you created in the BizCo design exercise.

Improve your architecture documentation. Create one or more views, using the principles

and examples in this module. Consider both structure and behavior.

Which views?

Choose your most important scenario, and document views that allow you to precisely

reason about that scenario.

Documenting Software Architectures

294
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary – 1

Primary uses of architecture documentation include construction, education, and analysis.

Documenting an architecture is a matter of documenting its views and then documenting

information that applies to more than one view.

A view is a representation of a structure. Choose the views to document that best represent the

structures inherent in the architecture and that best serve your stakeholders’ needs.

Use a standard organization.

Make sure your diagrams always have a notation key.

Documenting Software Architectures

295
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary – 2

Diagrams are not enough! The elements in the diagrams must be explained.

Views by themselves are not enough! The views must be augmented with an explanation of the

documentation organization and the system as a whole.

Documenting Software Architectures

296
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

•Take the SEI Documenting Software

Architectures two-day course.

•Read Documenting Software Architectures:

Views and Beyond, 2nd ed., by P. Clements,

F. Bachmann, L. Bass, D. Garlan, J. Ivers,

R. Little, R. Nord, & J. Stafford; published

by Addison-Wesley.

•See a Microsoft Word template for a software

architecture document based on the

Views & Beyond / ISO 42010 approach,

available at

http://www.sei.cmu.edu/architecture/arch_doc.html

For More Information About Architecture Documentation
Documenting Software Architectures

298
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

ARCHITECTURE EVALUATION

299
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Objectives

This module will familiarize participants with

• why we evaluate architectures

• when it’s appropriate to evaluate architectures

• the benefits of evaluating architectures

• the cost of evaluating architectures

• techniques for evaluating architectures

• the SEI Architecture Tradeoff Analysis Method® (ATAM®)

Architecture Evaluation

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

300
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Outline

Architecture Evaluation

• Why, When, Benefits, and Costs

• Evaluation Techniques

Architecture Tradeoff Analysis Method (ATAM)

Summary

Architecture Evaluation

u

301
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Outline

Architecture Evaluation

• Why, When, Benefits, and Costs

• Evaluation Techniques

Architecture Tradeoff Analysis Method (ATAM)

Summary

Architecture Evaluation

u

302
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Why Evaluate an Architecture?

Because so much is riding on it!

• An unsuitable architecture will precipitate disaster.

• Architecture determines the structure of the project.

Because we can!

• Repeatable, structured methods offer a low-cost risk mitigation capability that can

be employed early in the development lifecycle.

• Making sure an architecture is the right one simply makes good sense.

Architecture evaluation should be a standard part of every development methodology.

Architecture Evaluation

303
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

When to Evaluate an Architecture – 1

Analyzing for system quality attributes early in the lifecycle allows for a

comparison of architectural options.

When building a system

• Architecture is the earliest artifact in which tradeoffs are visible and about

which the most far-reaching design decisions are made.

• Evaluation should be done when deciding on an architecture.

• The reality is that evaluation is often done during damage control, later in

the project.

Architecture Evaluation

304
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

When to Evaluate an Architecture – 2

When acquiring a system

• Architecture evaluation is particularly useful if the system will have a long

lifetime within an organization.

• Evaluation provides a mechanism for understanding how the system

will evolve.

• Evaluation provides early insight into system capabilities and

quality attributes.

When putting a system through major changes

• Evaluation can provide insight into how well the architecture will support

the changes.

Architecture Evaluation

305
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture Evaluation Benefits – 1

The representatives of four major companies—Millennium

Services, Lucent Technologies, AT&T Labs, and Avaya Labs—

had this to say:

Since 1988, we’ve conducted more than 700 project reviews.

Starting with AT&T, architecture reviews have grown across all

our companies. We estimate that projects of 100,000 non-

commentary source lines of code have saved an average of U.S.

$1 million each by identifying and resolving problems early.1

•1 Maranzano, J.F.; Rozsypal, S.A.; Zimmerman, G.H.; Warnken, G.W.; Wirth, P.E.; & Weiss, D.M.

“Architecture Reviews: Practice and Experience.” IEEE Software 22, 2 (2005): 34–43.

Architecture Evaluation

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52

306
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Forced preparation for evaluations

• Documentation/specifications must be provided; hence

they must exist.

• Some evaluations use standard questions, and the

architect can make sure ahead of time that the architecture

scores well.

• The criteria for evaluations is made explicit by prioritizing

requirements and quality goals.

Early detection of problems

• Problems detected early are much less expensive

to repair.

Architecture Evaluation Benefits – 2
Architecture Evaluation

307
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture Evaluation Benefits – 3

Improved architectures

• Pre-positioning for evaluations means that requirements and quality goals are

prioritized earlier in the lifecycle.

• Problems eliminated result in higher quality architectures.

Validation of requirements

• Architectures are evaluated against functional and quality attribute requirements.

• Often, the requirements are not clear.

• Evaluations uncover requirement ambiguities and gaps.

• Evaluations can be the basis for renegotiating requirements that turn out to be

difficult to achieve.

Architecture Evaluation

308
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Improved stakeholder communication

• Evaluations usually put all the stakeholders in the same room

for the first time.

• Evaluations often put stakeholders in the same room as the

architect for the first time.

• Communication channels remain open even after the

evaluation. Having stakeholders present

- uncovers conflicts and tradeoffs

- provides a forum for the negotiated resolution of problems

- promotes buy-in of the architecture

- builds a community of support that is a resource for the architect

Architecture Evaluation Benefits – 4
Architecture Evaluation

309
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture Evaluation Costs – 1

Boeing1

• An average of 91 person days per ATAM evaluation. On average, the breakdown is

- 4 evaluators, 70 hours each

- 1 facilitator, 120 hours

- architecture team, 90 hours

- 15 stakeholders,16 hours each

Bosch2

• An average of 49 person days per ATAM evaluation. This does not include effort

for the evaluators.

Architecture Evaluation

1 O’Connell, Don. “Architecture Analysis – Boeing’s Experiences Using the SEI ATAM and QAW Processes.”
Second SEI Software Architecture Technology User Network Conference, Pittsburgh, PA, April 2006.
www.sei.cmu.edu/library/abstracts/presentations/donoconnellarchanalysisoverview.cfm

2 Ferber, Stefan. “Architecture Reviews @ Bosch” (Keynote). First SEI Software Architecture Technology User Network

Conference, Pittsburgh, PA, April 2005. www.sei.cmu.edu/library/assets/Bosch_Architecture_Reviews_ferber.pdf

http://www.sei.cmu.edu/library/abstracts/presentations/donoconnellarchanalysisoverview.cfm
http://www.sei.cmu.edu/library/assets/Bosch_Architecture_Reviews_ferber.pdf

310
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architecture Evaluation Costs – 2

Organizational overhead of establishing a corporate evaluation unit

• management overhead

• communication expenses

• staffing the unit

• relocating personnel to a central location

• training

Personnel costs include having senior designers conduct evaluations

instead of designing

• loss of productivity (due to the reassignment of senior designers)

• time spent training staff in evaluation techniques

Architecture Evaluation

311
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Outline

Architecture Evaluation

• Why, When, Benefits, and Costs

• Evaluation Techniques

Architecture Tradeoff Analysis Method (ATAM)

Summary

Architecture Evaluation

u

312
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Evaluation Techniques

There are a variety of techniques for performing architecture evaluations, each

having a different cost and providing different information.

1. questioning techniques

• are applied to evaluate an architecture for any given reason

2. measuring techniques

• are applied to answer questions about specific quality attributes

Architecture Evaluation

313
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Questioning Techniques – 1

Scenario-based techniques

• Scenarios describe a specific interaction between stakeholders and a system.

• The architect explains how the architecture supports each scenario posed by the

evaluators.

• The ATAM is the best-known scenario-based evaluation method.

Questionnaire-based techniques

• Evaluation consists of the architect answering a prepared list of questions.

• Some questions apply to all architectures (especially those in a single domain).

• Some questions ask about the details of an architecture.

• Some ask about process or development:

- “Is there a single architect?”

- “How do you ensure conformance?”

Architecture Evaluation

314
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Questioning Techniques – 2

Checklist-based techniques

• Checklists contain detailed sets of yes/no questions.

• Checklists result from evaluating many architectures in a domain and “maturing”

the scenarios or questions into a standard check-off procedure.

• Checklists often focus on particular quality attributes.

• Examples

- “Have you verified that the peak load is within acceptable limits?”

- “Have you performed a fault-tree analysis for software safety?”

Checklists and questionnaires reflect more maturity or experience with

a class of similar systems and their architectures. Scenarios are specially developed

for each system (but can be saved and used to “seed” future evaluations).

Architecture Evaluation

315
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Measuring Techniques – 1

Metrics are quantitative interpretations of observable measures.

• Complexity metrics suggest areas where modifiability is poor or errors are

likely to occur.

• Performance metrics help identify the presence of bottlenecks.

Metric-based evaluations tend to focus on

• choosing an appropriate set of metrics

• the results of applying the metrics

• the assumptions underlying the interpretation of the metrics

(e.g., assumed event distribution)

Architecture Evaluation

316
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Measuring Techniques – 2

Simulations, prototypes, experiments

• involve building domain-specific or system-specific models of an architecture

- for example, a performance model or a queuing model

- high-fidelity models fairly expensive to create

- often exist as part of development anyway—in which case, they can be leveraged to

evaluate the architecture

• may resolve issues raised by a questioning technique

- for example, “What evidence do you have that performance is adequate?”

Architecture Evaluation

317
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Analysis at Different Stages of the Lifecycle

What kinds of analysis can you do, at what time in the

lifecycle, and with what level of confidence?

Architecture Evaluation

Lifecycle Stage Form of Analysis Cost Confidence

Requirements Experience-based analogy Low

Requirements Back-of-the-envelope Low

Architecture Thought experiment Low

Architecture Checklist Low

Architecture Analytic model Low-Medium

Architecture Simulation Medium

Architecture Prototype Medium

Implementation Experiment Medium-High

Fielded system Instrumentation Medium-High

318
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Typical Outputs from Evaluations

Set of ranked issues, risks, or problem areas that

• have supporting data

• are contained in a formal report

• are used as feedback to the project

Enhanced system documentation

Set of scenarios, questions, or checklists for future use

Identification of potentially reusable components

Architecture Evaluation

319
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Outline

Architecture Evaluation

• Why, When, Benefits, and Costs

• Evaluation Techniques

Architecture Tradeoff Analysis Method (ATAM)

Summary

Architecture Evaluation

u

320
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The ATAM

The SEI developed the Architecture Tradeoff Analysis Method (ATAM) and has

applied it to architectures for systems of wide-ranging sizes and domains.

The purpose of the ATAM is to assess the consequences of architectural

decisions in light of quality attribute requirements and business goals.

The ATAM brings together three groups in an evaluation:

1. a trained evaluation team

2. an architecture’s “decision makers” (architect, senior designers, project

managers, customers)

3. representatives of the architecture’s stakeholders

Architecture Evaluation

321
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Purpose of the ATAM – 1

The ATAM is a method that helps stakeholders ask the right questions to discover

potentially problematic architectural decisions.

Discovered risks can then be made the focus of mitigation activities such as further

design, further analysis, and prototyping.

Surfaced tradeoffs can be explicitly identified and documented.

Architecture Evaluation

322
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Purpose of the ATAM – 2

The purpose is NOT to provide precise analyses. An ATAM evaluation will not

generate a queuing model of performance, or a Markov model of availability, or a

coupling model of modifiability, …

The purpose IS to discover any risks created by architectural decisions.

Architecture Evaluation

323
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

When to Use the ATAM

The ATAM can be used throughout the lifecycle when there is a software

architecture to evaluate.

The ATAM can be used

• after an architecture has been specified but there is little or no code

• to evaluate architectural alternatives

• to evaluate the architecture of an existing system

An ATAM evaluation is inappropriate if the software architecture of the system

has not been created yet.

Architecture Evaluation

324
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phases

ATAM evaluations are conducted in four phases.

Architecture Evaluation

Duration: varies

Meeting: primarily

phone, email

Duration: 2 days each for

Phase 1 and Phase 2

Meeting: typically conducted

at customer site

Duration: varies

Meeting: primarily

phone, email

Phase 0:

Partnership

and

Preparation

Phase 1:

Initial

Evaluation

Phase 2:

Complete

Evaluation

Phase 3:

Follow-Up

325
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phase 0

Phase 0 precedes the technical part of the evaluation:

• The customer and a subset of the evaluation team discuss their understanding

of the method and the system whose architecture is to be evaluated.

• An agreement to perform the evaluation is worked out.

• A core evaluation team is fielded.

Architecture Evaluation

326
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phase 1

Phase 1 involves a small group of predominantly technically oriented stakeholders.

Phase 1 is

• architecture-centric

• focused on eliciting detailed architectural information and analyzing it

• a top-down analysis

Architecture Evaluation

327
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phase 1 Steps

1. Present the ATAM.

2. Present business drivers.

3. Present architecture.

4. Identify architectural approaches.

5. Generate quality attribute utility tree.

6. Analyze architectural approaches.

7. Brainstorm and prioritize scenarios.

8. Analyze architectural approaches.

9. Present results.

Architecture Evaluation

Phase 1

328
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Are Quality Attribute Utility Trees?

You can identify, prioritize, and refine the most important quality attribute goals by

building a utility tree.

• A utility tree is a top-down vehicle for characterizing the “driving” attribute-

specific requirements.

• The highest level nodes are typically quality attributes such as performance,

modifiability, security, availability, and so forth.

• Scenarios are the leaves of the utility tree.

The utility tree is a characterization and a prioritization of specific quality

attribute requirements.

Architecture Evaluation

329
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Example of Quality Attribute Utility Tree
Architecture Evaluation

L = Low, M = Medium, H = High

Utility

Reduce storage latency on customer

DB to < 200 ms.

Performance

Modifiability

Availability

Security

Data latency

Transaction

throughput

New products

Change COTS

H/W failure

COTS S/W failures

Data

confidentiality

Deliver video in real time.

(L,M)

(M,M)

Add new middleware in

< 20 person-months.

Change Web user interface in

< 4 person-weeks.

(H,H)

(H,L)

Power outage at Site 1 requires traffic

to be redirected to Site 2 in < 3 seconds.

Network failure is detected and

recovered in < 1.5 minutes.

(H,H)

(H,H)

Customer DB authorization

works 99.999% of the time.

Credit card transactions are

secure 99.999% of the time.

(H,M)

(H,L)

Data integrity

330
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Scenarios Are Used – 1

For design purposes, we use six-part scenarios as described earlier:

1. source – an entity that generates a stimulus

2. stimulus – a condition that affects the system

3. artifact(s) – the part of the system that was stimulated by the

stimulus

4. environment – the condition under which the stimulus occurred

5. response – the activity that results because of the stimulus

6. response measure – the measure by which the system’s

response will be evaluated

Architecture Evaluation

331
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Scenarios Are Used – 2

Scenarios are used to

• represent stakeholders’ interests

• understand quality attribute requirements

Scenarios should cover a range of

• anticipated uses of the system (use case scenarios)

• anticipated changes to the system (growth scenarios)

• unanticipated stresses on the system (exploratory scenarios)

Scenarios are linked to business goals, for traceability.

A good scenario clearly states the stimulus and the responses of interest.

Architecture Evaluation

332
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Examples of Scenarios

Use case scenario

• A remote user requests a database report via the Web during a peak period and

receives it within 5 seconds.

Growth scenario

• During maintenance, add an additional data server within 1 person-week.

Exploratory scenario

• Half of the servers go down during normal operation without affecting the

overall system availability.

Scenarios should be as specific as possible.

Architecture Evaluation

333
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Stimuli, Environment, Responses

Use case scenario

• The remote user requests a database report via the Web during a peak

period and receives it within 5 seconds.

Growth scenario

• During maintenance, add an additional new data server within

1 person-week.

Exploratory scenario

• Half of the servers go down during normal operation without affecting the

overall system availability.

Architecture Evaluation

334
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Scenario Analysis Outputs

As each scenario is analyzed against the architecture, the evaluation team

identifies risks, non-risks, sensitivity points, and tradeoffs.

• A risk is a potentially problematic architectural decision.

• Non-risks are good architectural decisions that are frequently implicit in

the architecture.

• A sensitivity point is a place in the architecture that significantly affects whether

a particular quality attribute response is achieved.

• A tradeoff is a property that affects more than one attribute and is a sensitivity

point for more than one attribute.

Architecture Evaluation

335
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Risks and Tradeoffs

Risk example

• “Rules for writing business logic modules in the second tier of your three-tier

architecture are not articulated clearly. This could result in the replication of

functionality, thereby compromising the modifiability of the third tier.”

Tradeoff example

• “Increasing the level of encryption will significantly increase security but

decrease performance.”

Architecture Evaluation

336
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Sensitivity Points and Non-Risks

Sensitivity point example

• “The response time to system events is sensitive to the number of processes running

on the main processor.”

Non-risk example

• “Assuming message-arrival rates of no more than once per second and a processing

time of less than 30 ms, the architecture should meet the 1-second soft deadline

requirement.”

Architecture Evaluation

337
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phase 2

Phase 2 involves a larger group of stakeholders.

Phase 2 is

• stakeholder-centric

• focused on eliciting diverse stakeholders’ points of view and verifying the results of

Phase 1

• bottom-up analysis

Architecture Evaluation

338
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phase 2 Steps
Architecture Evaluation

Phase 1

1. Present the ATAM.

2. Present business drivers.

3. Present architecture.

4. Identify architectural approaches.

5. Generate quality attribute utility tree.

6. Analyze architectural approaches.

7. Brainstorm and prioritize scenarios.

8. Analyze architectural approaches.

9. Present results.

Do this

Phase 1

339
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Phase 3

Phase 3 primarily involves producing a final report for the customer as well as

assessing the quality of the evaluation and the ATAM materials.

Architecture Evaluation

340
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Conceptual Flow of the ATAM
Architecture Evaluation

Architectural

Decisions

Scenarios
Quality

Attributes

Architectural

Approaches

Business

Drivers

Software

Architecture

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Analysis

distilled

into

impacts

Risk Themes

341
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Group Exercise

Work together in pairs of groups, where one group is the evaluation team and one group

is the architecture team.

Consider the following scenario:

BizCo server at a branch location stops responding. The failure is detected and

the system is restored to normal operation within 90 seconds.

Complete the analysis template provided on the following slides.

Architecture Evaluation

342
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Scenario Analysis Template: Part 1

ATAM: Scenario Analysis

Scenario

Business
Goal(s)

Attribute

Attribute
Concern

Scenario
Refinement

Stimulus

Stimulus
Source

Environment

Artifact

Response

Response
Measure

Architecture Evaluation

343
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Scenario Analysis Template: Part 2

Architectural

Decisions and

Reasoning

Risks 1.

Sensitivities 1.

Tradeoffs 1.

Non-Risks 1.

Other Issues 1.

Architecture Evaluation

344
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Outline

Architecture Evaluation

• Why, When, Benefits, and Costs

• Evaluation Techniques

Architecture Tradeoff Analysis Method (ATAM)

Summary

Architecture Evaluation

u

345
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary

Architecture evaluation

• why – to understand and analyze design tradeoffs

• when – throughout the lifecycle

• benefits – overall cost reduction, better documentation/specifications, better

understanding and prioritization of requirements and quality goals, early detection of

problems, improved architectures, validation of requirements

Evaluations are carried out via questioning and measuring techniques.

The ATAM is the most widely used method for evaluating architectures with respect to

multiple quality attributes.

Architecture Evaluation

346
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

For More Information About Architecture Evaluation

Take the SEI Software Architecture Design and Analysis two-day course.

Read Evaluating Software Architectures: Methods and Case Studies, written by P.

Clements, R. Kazman, & M. Klein and published by Addison-Wesley.

Architecture Evaluation

347
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

APPLYING ARCHITECTURE

PRACTICES ON AGILE

PROJECTS

348
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Introduction

We have spent a lot of time in this course discussing the importance of quality attributes

and design.

We often get the question: How do these practices mesh with Agile development

methodology?

The short answer is that architecture practices matter even more in an Agile context.

As a quick introduction to Agile, we will cover two areas:

• Agile philosophy

• incremental lifecycle

Architectures in Agile Projects

349
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Philosophy: The Agile Manifesto
Architectures in Agile Projects

http://agilemanifesto.org

A common misconception is that Agile philosophy suggests writing code is the activity

that matters, but that is not what the manifesto says…

350
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Twelve Agile Principles – 1

1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the

project.

5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within

a development team is face-to-face conversation.

Architectures in Agile Projects

http://agilemanifesto.org

351
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Twelve Agile Principles – 2

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing

teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

Architectures in Agile Projects

http://agilemanifesto.org

352
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Agile Lifecycle and Quality Attribute Focus

Another key aspect of Agile is the incremental

life cycle:

• Sprints are increments of functionality

• Gold standard duration is two weeks

It is not uncommon to see multiple Agile

teams working in parallel at this fast pace.

Software must be modular, flexible, and

reliable.

For these reasons, a focus on quality

attributes and strong evaluation practices are

very important!

Team 1 Team 2 Team 3
Sprint 1

Sprint 2

Sprint 3

Sprint 4

Sprint 5

Architectures in Agile Projects

353
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Much Architecture?

Two classes of activities add time to the project schedule:

1.up-front design work on the architecture and up-front risk identification, planning, and

resolution work

2. rework due to fixing defects and addressing modification requests

Intuitively, these two trade off against each other.

Boehm and Turner plotted these two values against each other for three hypothetical

projects:

• one project of 10 KSLOC

• one project of 100 KSLOC

• one project of 10,000 KSLOC

Architectures in Agile Projects

354
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Sweet Spot Drivers:
- Rapid Change: Leftward
- High Assurance : Rightward

How Much Architecture?
Architectures in Agile Projects

1 Data adapted from B. Boehm & R. Turner. Balancing Agility and

Discipline: A Guide for the Perplexed. Addison-Wesley, 2004.

355
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

How Much Architecture?

These lines show that there is a sweet spot for each project.

• For the 10-KSLOC project, the sweet spot is at the far left. Devoting

much time to up-front work is a waste for a small project.

• For the 100-KSLOC project, the sweet spot is around 20 percent of the

project schedule.

• For the 10,000-KSLOC project, the sweet spot is around 40 percent of

the project schedule.

A project with millions of lines of code is enormously complex.

It is hard to imagine how Agile practices alone can cope with this complexity

if there is no architecture to guide and organize the effort.

Architectures in Agile Projects

1 B. Boehm & R. Turner. Balancing Agility and Discipline: A Guide for the Perplexed. Addison-Wesley, 2004.

356
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Scaled Agile Framework-1

Agile processes were initially employed on small- to medium-sized projects.

Today, we see Agile being used on large-scale projects.

This requires a blend of Agile and architecture.

A widely used framework that blends Agile and architecture is the Scaled Agile

Framework (SAFe).

The purpose of this section is NOT to teach SAFe.

Rather, the purpose is to illustrate how practices in this course can be applied

using SAFe as a backdrop.

Architectures in Agile Projects

357
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Scaled Agile Framework-2

Scaled Agile Framework (SAFe) advocates "Agile Architecture”:1 a set of

principles aimed at finding the "sweet spot"

• supporting evolution of the architecture concurrent with the implementation

• avoiding the use of BDUF

• ensuring that the system “always runs,” supporting continuous delivery of value

• balancing emergent design and intentional architecture

Architectures in Agile Projects

1 http://www.scaledagileframework.com/Agile-Architecture/

358
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Scaled Agile Framework “Big Picture” Diagram

One of the biggest

contributions from SAFe

is this diagram.

It contains a lot of

information!

Source: https://www.scaledagileframework.com (used with permission from Scaled Agile Academy)

Architectures in Agile Projects

https://www.scaledagileframework.com/

359
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Why Use SAFe as a Backdrop?

SAFe is a useful backdrop for this module because course participants have different

roles in organizations of all sizes.

The SAFe “levels” allow for discussing Agile and architecture from various perspectives.

For example,

• some participants work on a single team

• some participants work on a program (multiple teams)

• some participants work at a portfolio level (multiple projects) and are concerned with

enterprise-level architecture and investments

Architectures in Agile Projects

360
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Simplified SAFe Diagram

Here is a simplified

SAFe model that we

use for illustrating

concepts in this module.

Large scale

environments require

architecture practices to

be applied at all 3

“levels” (Portfolio,

Program, Team)

Architectures in Agile Projects

361
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Applying Architecture Practices

The next few slides provide examples of practices discussed in this course

against the SAFe backdrop.

We start with the Team level (bottom level) and work our way up.

Architectures in Agile Projects

362
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Team Level-1

A common problem at the Project level (lowest level on the SAFe diagram) is that

the heavy focus on features in a project leads to a lack of focus on quality

attributes.

Systems become brittle, slow, and unreliable.

Technical debt accrues, and costly refactoring is necessary.

A quality attribute focus can help teams proactively minimize technical debt by

focusing attention on architectural concerns (balancing the feature focus).

Architectures in Agile Projects

363
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

The Team level provides several opportunities to apply techniques from this
course, as shown below.

Team Level-2

Requirements:

• Sprint 0 can employ a

QAW

• User stories can be

augmented with quality

concerns

Evaluation:

In later sprints, QA scenarios are

used to evaluate design decisions

during sprint reviews

Design:

• “Architecture Envisioning” can employ
techniques from ADD

• As the project matures, iterations can
be fleshed out

Architectures in Agile Projects

364
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Program Level

At this level, multiple Agile projects need to integrate or coordinate.

This is an important area; it is where risks often fall through cracks.

Requirements:

• QA scenarios can be created to

focus on cross-project concerns

such as interoperability and security

• In some cases, QA scenarios at this

level may become cross-portfolio

technical standards

Design and evaluation:

• QA scenarios and ADD can be used

for the architecture runway

• Scenario evaluation can be required

prior to release (often requires

bringing several teams together for

design, testing, etc.)

Architectures in Agile Projects

365
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Portfolio Level

At this level, architectural investments may support multiple projects.

If capabilities are shared, operational concerns—such as reliability, scalability,

availability, and performance—are important.

Requirements:

QA scenarios can be

created to focus on

operational concerns

Design and Evaluation:

• ADD can be used to

develop Portfolio enablers

• Architectural evaluation of

Portfolio enablers can be

required before release

Testing:

Load and performance test

cases may be generated from

the QA scenarios

Architectures in Agile Projects

366
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Agile-at-Scale Example: Wrap-up

That concludes an illustration of how the concepts in this course can be applied on a

single Agile project and at scale.

What are your experiences?

Architectures in Agile Projects

367
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary-1

We briefly described some key elements in the Agile philosophy and

lifecycle:

• Agile philosophy centers on the Agile Manifesto.

• Lifecycle is incremental.

We talked about challenges that teams face as they try to determine how

much to focus on architecture.

We also covered a little history.

• We explained that Agile processes were initially employed on small- to

medium-sized projects with short time frames.

• Today, Agile is also applied to successful large-scale projects; this

requires a blend of Agile and architecture.

Architectures in Agile Projects

368
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Module Summary-2

We explained that Scaled Agile Framework is a popular approach,

particularly among large organizations.

We showed how architecture practices from this course can be applied

using the Scaled Agile Framework as a backdrop.

Architectures in Agile Projects

369
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Further Reading

S. Bellomo, I. Gorton, R. Kazman, “Insights from 15 Years of ATAM Data:

Towards Agile Architecture,” IEEE Software, September/October, 2015, 32:5,

38–45.

H.-M. Chen, R. Kazman, S. Haziyev, V. Kropov, D. Chtchourov, “Architectural

Support for DevOps in a Neo-Metropolis BDaaS Platform,” Proceedings of

DSSO, 2015.

S. Bellomo, R. Nord, I. Ozkaya, “A Study of Enabling Factors for Rapid

Fielding (Combined Practices to Balance Speed and Stability)”, Proceedings

of ICSE, 2013.

J. Coplien, G. Bjornvig, Lean Architecture for Agile Software Development,

Wiley, 2010.

Architectures in Agile Projects

370
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

FINAL THOUGHTS

371
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Makes a “Good” Architecture?

There is no such thing as an inherently good or bad architecture.

Architectures are either more or less fit for some purpose.

Architectures can be evaluated, but only in the context of specific stated goals.

There are, however, good rules of thumb.

Final Thoughts

372
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Process “Rules of Thumb”

The architecture should be the product of a single architect or a small group of architects with an

identified technical leader.

• This approach leads to conceptual integrity and technical consistency.

• This recommendation holds for Agile and open source projects as well as “traditional” ones.

• There should be a strong connection between the architect(s) and the development team.

The architect (or architecture team) should base the architecture on a prioritized list of

well-specified quality attribute requirements.

The architecture should be documented using views that address the concerns of the

important stakeholders.

The architecture should be evaluated for its ability to deliver the system’s important quality attributes.

• This should occur early in the lifecycle and be repeated as appropriate.

The architecture should lend itself to incremental implementation.

• Create a “skeletal” system in which the communication paths are exercised but which at first

has minimal functionality.

Final Thoughts

373
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Structural “Rules of Thumb” – 1

The architecture should feature well-defined modules whose functional

responsibilities are assigned on the principles of information hiding and separation

of concerns.

• The information-hiding modules should encapsulate things likely to change.

• Each module should have a well-defined interface that encapsulates or “hides” the changeable

aspects from other software.

Unless your requirements are unprecedented, your quality attributes should be

achieved using well-known architectural patterns and tactics specific to each

attribute.

The architecture should never depend on a particular version of a commercial

product or tool. If it must, it should be structured so that changing to a different

version is straightforward and inexpensive.

Modules that produce data should be separate from modules that consume data.

Final Thoughts

374
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Structural “Rules of Thumb” – 2

Don’t expect a one-to-one correspondence between modules and components.

Every process should be written so that its assignment to a specific processor can be

easily changed, perhaps even at runtime.

The architecture should feature a small number of ways for components

to interact.

• The system should do the same things in the same way throughout.

• This will aid in understandability, reduce development time, increase reliability, and

enhance modifiability.

The architecture should contain a specific (and small) set of resource contention areas,

the resolution of which is clearly specified and maintained.

Final Thoughts

375
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Discussion

What are good rules of thumb for architecture in your experience? What has

worked for you—or failed you—in the past?

Final Thoughts

376
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Makes a Good Architect?

What does it mean for an architect to be "competent"?

How would you know?

And what should an organization do to foster such architects?

Final Thoughts

377
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Most of the work in architecture to date has been technical:

• Design and creation

• Evaluation and analysis of architectures

• Styles and patterns

• Architectural reuse and software product lines

• Architectures for particular domains

• Architectural re-engineering and recovery

Improving Software Architecture Competence – 1
Final Thoughts

378
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

But architectures are created by architects…

• How can we help them do their best work?

• What does it mean for an architect to be competent?

• How can an architect improve his/her competence?

…working in organizations.

• How can we help an organization help its

architects do their best work?

• What does it mean for an organization that

produces architectures to be competent?

• How can an organization improve its

competence in architecture?

Improving Software Architecture Competence – 2
Final Thoughts

379
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

What Is Competence?

“The architecture competence of an organization is the ability of that organization

to grow, use, and sustain the skills and knowledge necessary to effectively carry

out architecture-centric practices at the individual, team, and organizational levels

so as to produce high-quality architectures aligned with the organization’s

business goals.”1

This gives us a way to evaluate architects and organizations via

• past performance

• present performance

Final Thoughts

1. L. Bass, P. Clements, R. Kazman, M. Klein, “Models for Evaluating and

Improving Architecture Competence,” CMU/SEI-2008-TR-006, 2008.

380
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

To measure how competent an architect is, we should

be able to measure how well he or she

• performs architectural duties

• masters architectural skills

• possesses needed architectural

knowledge

First step: Find out what those are!

• What are their duties?

• What skills and knowledge made them “capable of

performing their allotted or required function?”

How can we find this out?

Duties/Skills/Knowledge Model
Final Thoughts

Duties

Skills Knowledge

support supports

381
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Three broad sources of information (with counts)

• “Broadcast” sources: information written by self-styled experts for mass anonymous consumption

- Websites: e.g., Bredemeyer, SEI, HP, IBM (16*)

- Blogs and essays (16*)

- “Duties” list on SEI website

- Books on software architecture (25 top sellers)

• Education and training sources:

- University courses in software architecture (29*)

- Industrial/non-university public courses (22*)

- Certificate and certification programs in architecture; e.g., SEI, Open Group, Microsoft (7*)

• “Architecture for a living” sources

- Position descriptions for software architects (60)

- Résumés of software architects (12)

- Questionnaires from practicing architects (30+)

* Exhaustive or near-exhaustive web search

We Surveyed the “Community”
Final Thoughts

382
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

We surveyed over 200 sources.

We cataloged

• 201 duties

• 85 skills

• 96 knowledge areas

We grouped the data into clusters using

an affinity exercise.

Survey Results
Final Thoughts

383
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Duties

Architecting • Overall

• Creating the architecture

• Architecture evaluation and analysis

• Documentation

• Existing system and transformation

Life cycle phases other

than architecture

• Requirements

• Testing

• Coding and development

Technology related • Future technologies

• Tools and technology selection

Interacting with stakeholders • Overall

• Clients

• Developers

Management • Project management

• People management

• Support for project management

Organization and business related • Organization

• Business

Leadership and team building • Technical leadership

• Team building

Final Thoughts

384
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Skills

Communication skills Out
Both (i.e., two-way)
In

Interpersonal skills Within team
With other people
Leadership skills

Work skills Effectively managing high workload
Skills to excel in a corporate environment
Skills for handling large amounts of information

Personal skills Personal qualities
Skills for handling unknown
Skills for handling unexpected
Learning

Final Thoughts

385
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Architectural Knowledge

Computer science
knowledge

Knowledge of architecture concepts
Knowledge of software engineering
Design knowledge
Programming knowledge

Knowledge of technologies
and platforms

Specific
Platforms
General
Domain

Knowledge about organizational context
and management

Industry
Enterprise knowledge
Leadership and management

Final Thoughts

386
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Discussion

How do you see the role of architecture evolving in your organization?

Final Thoughts

387
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Where We Have Been

We have discussed

• the fundamentals of software architecture

• the Architecture Influence Cycle

• the precise characterization of quality attributes

• foundational design concepts (patterns, tactics, etc.)

• the documentation of architectures

• the evaluation of architectures

And we have explained how to package these concepts into methods.

Final Thoughts

388
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

QAW, ADD, V&B, and ATAM Together
Final Thoughts

Prioritized

QA scenarios

Client
Teller 1

Account
Server-Main

Account
Server-Backup

Account
AdministrativeDatabase

Connector Types:

Publish-Suscribe

Client-Server
Request/Reply

Database Access

AttachmentKEY Component Types:

Client

Server

Database

Database
Application

ASTER
Gateway

V0

Gateway

Maintenance

Tool

DSSYBASE

KEY
Repository Component

RPC

SQL

Exposed RPC
Interface

Exposed SQL
Interface

Patterns and

tactics

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> C

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<layer>> A

<<allowed to use>><<allowed to use>>

<<allowed to use>>

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> C

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<layer>> A

<<allowed to use>><<allowed to use>>

<<allowed to use>>

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> C

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<layer>> A

<<allowed to use>><<allowed to use>>

<<allowed to use>>

Lightweight view
packets; views
determined by
patterns

Requirements,

constraints

QAW

ADD

Views &

Beyond
ATAM

Chosen, combined
views plus
documentation
beyond views

Stakeholders

389
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Final Thoughts

391
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and Practices

SEI Opportunities and Events

392
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture Professional Certificate

You can become a recognized expert in

architecture-centric practices—on your team and

in your organization. The Software Architecture

Professional Certificate brings an obvious

advantage to

• every project you serve

• your organization, which will enjoy an edge over

other contractors during the bidding process. The

SEI certificate reassures potential customers and

enhances credibility.

• your value to your organization and potential to

lead development efforts

You’ve already completed an important step.

You can earn the SEI Software Architecture

Professional Certificate by

• completing the Software Architecture: Principles

and Practices course

• completing the Documenting Software

Architecture course

• completing the Software Architecture Design

and Analysis course

• completing the Software Architecture: Principles

and Practices Examination

For more information, visit

http://www.sei.cmu.edu/training/certificates/architect

ure/professional.cfm

SEI Opportunities and Events

http://www.sei.cmu.edu/training/certificates/architecture/professional.cfm

393
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Software Architecture: Principles and
Practices Examination

Individuals pursuing the Software Architecture Professional Certificate,

ATAM Evaluator Certificate, or Service-Based Architecture Professional

Certificate must demonstrate architecture proficiency through the Software

Architecture: Principles and Practices Examination.

Individuals pursing ATAM Leader Certification must also demonstrate

architecture proficiency via the exam.

For more information about the exam, visit

http://www.sei.cmu.edu/training/v19.cfm

SEI Opportunities and Events

http://www.sei.cmu.edu/training/v19.cfm

394
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

Other Software Architecture Certificate and
Certification Opportunities

Successfully completing the Software

Architecture: Principles and Practices

Examination affords individuals the

opportunity to pursue one or more of the

following credentials:

• Software Architecture Professional

Certificate

• ATAM Evaluator Certificate

• Service-Based Architecture Professional

Certificate

• ATAM Leader Certification

For more information on the SEI’s Software

Architecture Certificate Programs visit:

http://www.sei.cmu.edu/training/certificates/

architecture/

For more information on the SEI’s Software

Architecture Certification Programs visit:

http://www.sei.cmu.edu/certification/opportu

nities/index.cfm

SEI Opportunities and Events

http://www.sei.cmu.edu/training/certificates/architecture/
http://www.sei.cmu.edu/certification/opportunities/index.cfm

395
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

ATAM Evaluator Certificate

You’re on the path to becoming an ATAM

Professional. The Software Architecture:

Principles and Practices course is a

prerequisite for expanding your architecture

evaluation skills via the SEI’s ATAM

Evaluator Training.

Completing ATAM Evaluator Training

results in

• an ATAM Evaluator certificate from the SEI

• recognition of your architecture evaluation

knowledge and skills

• membership in a community of experts

who are key contributors to their

organizations’ software success

ATAM Evaluator Training is a prerequisite for

becoming an SEI-Certified ATAM Leader,

which results in

• elevation to a higher level of expertise

• official recognition of skills

• career advancement opportunities

• increased influence: participation in

a community of ATAM Leaders who

collaborate to improve the method

and practice

SEI Opportunities and Events

397
Software Architecture Principles and Practices
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release and

unlimited distribution.

