-
Notifications
You must be signed in to change notification settings - Fork 12
/
dataset_image.py
153 lines (124 loc) · 4.48 KB
/
dataset_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# copied from https://github.com/ivam-he/BernNet
# load the image dataset from the `"BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation" paper
from torch_geometric.data import InMemoryDataset
import torch
from torch_geometric.data.data import Data
import scipy.io as sio
import numpy as np
import matplotlib.pyplot as plt
from torch_geometric.utils import to_scipy_sparse_matrix
import os
from numpy.linalg import eigh
import math
filter_type = ['low', 'high', 'band', 'rejection', 'comb', 'low_band']
class TwoDGrid(InMemoryDataset):
def __init__(self, root="./data/2Dgrid", transform=None, pre_transform=None):
super(TwoDGrid, self).__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self):
return ["2Dgrid.mat"]
@property
def processed_file_names(self):
return 'data.pt'
def download(self):
pass
def process(self):
# Read data into huge `Data` list.
b = self.processed_paths[0]
a = sio.loadmat(self.raw_paths[0]) # 'subgraphcount/randomgraph.mat')
# list of adjacency matrix
A = a['A']
# list of output
F = a['F']
F = F.astype(np.float32)
# Y=a['Y']
# Y=Y.astype(np.float32)
M = a['mask']
M = M.astype(np.float32)
data_list = []
E = np.where(A > 0)
edge_index = torch.Tensor(np.vstack((E[0], E[1]))).type(torch.int64)
x = torch.tensor(F)
# y=torch.tensor(Y)
m = torch.tensor(M)
x_tmp = x[:, 0:1]
data_list.append(Data(edge_index=edge_index, x=x, x_tmp=x_tmp, m=m))
if self.pre_filter is not None:
data_list = [data for data in data_list if self.pre_filter(data)]
if self.pre_transform is not None:
data_list = [self.pre_transform(data) for data in data_list]
data, slices = self.collate(data_list)
torch.save((data, slices), self.processed_paths[0])
def visualize(y):
# y=tensor.detach().cpu().numpy()
y = np.reshape(y, (100, 100))
plt.imshow(y.T)
plt.colorbar()
plt.show()
def myeign(L):
if os.path.exists('./data/eigenvalues.npy') and os.path.exists('./data/eigenvectors.npy'):
eigenvalues = np.load('./data/eigenvalues.npy')
eigenvectors = np.load('./data/eigenvectors.npy')
else:
eigenvalues, eigenvectors = eigh(L)
np.save('./data/eigenvalues.npy', eigenvalues)
np.save('./data/eigenvectors.npy', eigenvectors)
return eigenvalues, eigenvectors
def filtering(filter_type, dataset):
data = dataset[0]
x = data.x.numpy()
# print(data.edge_index)
adj = to_scipy_sparse_matrix(data.edge_index).todense()
nnodes = adj.shape[0]
D_vec = np.sum(adj, axis=1).A1
# print(D_vec.tolist())
D_vec_invsqrt_corr = 1 / np.sqrt(D_vec)
D_invsqrt_corr = np.diag(D_vec_invsqrt_corr)
# print(D_invsqrt_corr)
L = np.eye(nnodes)-D_invsqrt_corr @ adj @ D_invsqrt_corr
# print(L)
eigenvalues, eigenvectors = myeign(L)
# print(eigenvalues[3])
# low-pass
if filter_type == 'low':
value_tmp = [math.exp(-10*(xxx-0)**2) for xxx in eigenvalues]
# high-pass
elif filter_type == 'high':
value_tmp = [1-math.exp(-10*(xxx-0)**2) for xxx in eigenvalues]
# band-pass
elif filter_type == 'band':
value_tmp = [math.exp(-10*(xxx-1)**2) for xxx in eigenvalues]
# band_rejection
elif filter_type == 'rejection':
value_tmp = [1-math.exp(-10*(xxx-1)**2) for xxx in eigenvalues]
# comb
elif filter_type == 'comb':
value_tmp = [abs(np.sin(xxx*math.pi)) for xxx in eigenvalues]
# low_band
elif filter_type == 'low_band':
y = []
for i in eigenvalues:
if i < 0.5:
y.append(1)
elif i < 1 and i >= 0.5:
y.append(math.exp(-100*(i-0.5)**2))
else:
y.append(math.exp(-50*(i-1.5)**2))
value_tmp = y
value_tmp = np.array(value_tmp)
value_tmp = np.diag(value_tmp)
# print(value_tmp[5000][5000])
y = eigenvectors@value_tmp@eigenvectors.T@x
np.save('y_'+filter_type+'.npy', y)
return y
def load_img(name):
ds = TwoDGrid(root='data/2Dgrid', pre_transform=None)
y = filtering(name, ds)
y = torch.Tensor(y)
data = ds[0]
x = data.x
ei = data.edge_index
ea = torch.ones((ei[1].shape[0]))
mask = data.m.to(torch.long)
return x, y, ei, ea, mask