We're super excited to have you interested in working on Vector! Before you start you should pick how you want to develop.
For small or first-time contributions, we recommend the Docker method. Prefer to do it yourself? That's fine too!
Targets: You can use this method to produce AARCH64, Arm6/7, as well as x86/64 Linux builds.
Since not everyone has a full working native environment, we took our environment and stuffed it into a Docker (or Podman) container!
This is ideal for users who want it to "Just work" and just want to start contributing. It's also what we use for our CI, so you know if it breaks we can't do anything else until we fix it. 😉
Before you go further, install Docker or Podman through your official package manager, or from the Docker or Podman sites.
# Optional: Only if you use `podman`
export CONTAINER_TOOL="podman"
If your Linux environment runs SELinux in Enforcing mode, you will need to relabel the vector source code checkout with container_home_t
context. Otherwise, the container environment cannot read/write the code:
cd your/checkout/of/vector/
sudo semanage fcontext -a "${PWD}(/.*)?" -t container_file_t
sudo restorecon . -R
By default, make environment
style tasks will do a docker pull
from GitHub's container repository, you can optionally build your own environment while you make your morning coffee ☕:
# Optional: Only if you want to go make a coffee
make environment-prepare
Now that you have your coffee, you can enter the shell!
# Enter a shell with optimized mounts for interactive processes.
# Inside here, you can use Vector like you have full toolchain (See below!)
make environment
# Try out a specific container tool. (Docker/Podman)
make environment CONTAINER_TOOL="podman"
# Add extra cli opts
make environment CLI_OPTS="--publish 3000:2000"
Now you can use the jobs detailed in "Bring your own toolbox" below.
Want to run from outside of the environment? Clever. Good thinking. You can run any of the following:
# Validate your code can compile
make check ENVIRONMENT=true
# Validate your code actually does compile (in dev mode)
make build-dev ENVIRONMENT=true
# Validate your test pass
make test SCOPE="sources::example" ENVIRONMENT=true
# Validate tests (that do not require other services) pass
make test ENVIRONMENT=true
# Validate your tests pass (starting required services in Docker)
make test-integration SCOPE="sources::example" ENVIRONMENT=true
# Validate your tests pass against a live service.
make test-integration SCOPE="sources::example" AUTOSPAWN=false ENVIRONMENT=true
# Validate all tests pass (starting required services in Docker)
make test-integration ENVIRONMENT=true
# Run your benchmarks
make bench SCOPE="transforms::example" ENVIRONMENT=true
# Format your code before pushing!
make fmt ENVIRONMENT=true
We use explicit environment opt-in as many contributors choose to keep their Rust toolchain local.
Targets: This option is required for MSVC/Mac/FreeBSD toolchains. It can be used to build for any environment or OS.
To build Vector on your own host will require a fairly complete development environment!
Loosely, you'll need the following:
- To build Vector: Have working Rustup, Protobuf tools, C++/C build tools (LLVM, GCC, or MSVC), Python, and Perl,
make
(the GNU one preferably),bash
,cmake
,GNU coreutils
, andautotools
. - To run
make test
: Installcargo-nextest
- To run integration tests: Have
docker
available, or a real live version of that service. (UseAUTOSPAWN=false
) - To run
make check-component-features
: Haveremarshal
installed. - To run
make check-licenses
orcargo vdev build licenses
: Havedd-rust-license-tool
installed. - To run
cargo vdev build component-docs
: Havecue
installed.
If you find yourself needing to run something inside the Docker environment described above, that's totally fine, they won't collide or hurt each other. In this case, you'd just run make environment-generate
.
We're interested in reducing our dependencies if simple options exist. Got an idea? Try it out, we'd to hear of your successes and failures!
In order to do your development on Vector, you'll primarily use a few commands, such as cargo
and make
tasks you can use ordered from most to least frequently run:
# Validate your code can compile
cargo check
make check
# Validate your code actually does compile (in dev mode)
cargo build
make build-dev
# Validate your test pass
cargo test sources::example
make test SCOPE="sources::example"
# Validate tests (that do not require other services) pass
cargo test
make test
# Validate your tests pass (starting required services in Docker)
make test-integration SCOPE="sources::example"
# Validate your tests pass against a live service.
make test-integration SCOPE="sources::example" autospawn=false
cargo test --features docker sources::example
# Validate all tests pass (starting required services in Docker)
make test-integration
# Run your benchmarks
make bench SCOPE="transforms::example"
cargo bench transforms::example
# Format your code before pushing!
make fmt
cargo fmt
# Build component documentation for the website
cargo vdev build component-docs
If you run make
you'll see a full list of all our tasks. Some of these will start Docker containers, sign commits, or even make releases. These are not common development commands and your mileage may vary.
/.github
- GitHub & CI related configuration./benches
- Internal benchmarks./config
- Public facing Vector config, included in releases./distribution
- Distribution artifacts for various targets./docs
- Internal documentation for Vector contributors./lib
- External libraries that do not depend onvector
but are used within the project./proto
- Protobuf definitions./rfcs
- Previous Vector proposals, a great place to build context on previous decisions./scripts
- Scripts used to generate docs and maintain the repo./src
- Vector source./tests
- Various high-level test cases./website
- Vector's website and external documentation for Vector users.
Vector includes a Makefile
in the root of the repo. This serves
as a high-level interface for common commands. Running make
will produce
a list of make targets with descriptions. These targets will be referenced
throughout this document.
We use rustfmt
on stable
to format our code and CI will verify that your
code follows
this format style. To run the following command make sure rustfmt
has been
installed on the stable toolchain locally.
# To install rustfmt
rustup component add rustfmt
# To format the code
make fmt
- Always use the Tracing crate's key/value style for log events.
- Events should be capitalized and end with a period,
.
. - Never use
e
orerr
- always spell outerror
to enrich logs and make it clear what the output is. - Prefer Display over Debug,
%error
and not?error
.
Nope!
warn!("Failed to merge value: {}.", err);
Yep!
warn!(message = "Failed to merge value.", %error);
As a general rule, code in Vector should not panic.
However, there are very rare situations where the code makes certain assumptions about the given state and if those assumptions are not met this is clearly due to a bug within Vector. In this situation Vector cannot safely proceed. Issuing a panic here is acceptable.
All potential panics MUST be clearly documented in the function documentation.
When a new component (a source, transform, or sink) is added, it has to be put
behind a feature flag with the corresponding name. This ensures that it is
possible to customize Vector builds. See the features
section in Cargo.toml
for examples.
In addition, during development of a particular component it is useful to
disable all other components to speed up compilation. For example, it is
possible to build and run tests only for console
sink using
cargo test --lib --no-default-features --features sinks-console sinks::console
In case if the tests are already built and only the component file changed, it is around 4 times faster than rebuilding tests with all features.
Dependencies should be carefully selected and avoided if possible. You can see how dependencies are reviewed in the Reviewing guide.
If a dependency is required only by one or multiple components, but not by
Vector's core, make it optional and add it to the list of dependencies of
the features corresponding to these components in Cargo.toml
.
Sinks may implement a health check as a means for validating their configuration against the environment and external systems. Ideally, this allows the system to inform users of problems such as insufficient credentials, unreachable endpoints, nonexistent tables, etc. They're not perfect, however, since it's impossible to exhaustively check for issues that may happen at runtime.
When implementing health checks, we prefer false positives to false negatives. This means we would prefer that a health check pass and the sink then fail than to have the health check fail when the sink would have been able to run successfully.
A common cause of false negatives in health checks is performing an operation that the sink itself does not need. For example, listing all the available S3 buckets and checking that the configured bucket is on that list. The S3 sink doesn't need the ability to list all buckets, and a user that knows that may not have permitted it to do so. In that case, the health check will fail due to bad credentials even through its credentials are sufficient for normal operation.
This leads to a general strategy of mimicking what the sink itself does. Unfortunately, the fact that health checks don't have real events available to them leads to some limitations here. The most obvious example of this is with sinks where the exact target of a write depends on the value of some field in the event (e.g. an interpolated Kinesis stream name). It also pops up for sinks where incoming events are expected to conform to a specific schema. In both cases, random test data is reasonably likely to trigger a potential false-negative result. Even in simpler cases, we need to think about the effects of writing test data and whether the user would find that surprising or invasive. The answer usually depends on the system we're interfacing with.
In some cases, like the Kinesis example above, the right thing to do might be nothing at all. If we require dynamic information to figure out what entity (i.e. Kinesis stream in this case) that we're even dealing with, odds are very low that we'll be able to come up with a way to meaningfully validate that it's in working order. It's perfectly valid to have a health check that falls back to doing nothing when there is a data dependency like this.
With all that in mind, here is a simple checklist to go over when writing a new health check:
- Does this check perform different fallible operations from the sink itself?
- Does this check have side effects the user would consider undesirable (e.g. data pollution)?
- Are there situations where this check would fail but the sink would operate normally?
Not all the answers need to be a hard "no", but we should think about the likelihood that any "yes" would lead to false negatives and balance that against the usefulness of the check as a whole for finding problems. Because we have the option to disable individual health checks, there's an escape hatch for users that fall into a false negative circumstance. Our goal should be to minimize the likelihood of users needing to pull that lever while still making a good effort to detect common problems.
Testing is very important since Vector's primary design principle is reliability. You can read more about how Vector tests in our testing blog post.
Unit tests refer to the majority of inline tests throughout Vector's code. A defining characteristic of unit tests is that they do not require external services to run, therefore they should be much quicker. You can run them with:
cargo test
Integration tests verify that Vector actually works with the services it integrates with. Unlike unit tests, integration tests require external services to run. A few rules when setting up integration tests:
- To ensure all contributors can run integration tests, the service must run in a Docker container.
- The service must be configured on a unique port that is configured through an environment variable.
- Add a
test-integration-<name>
to Vector'sMakefile
and ensure that it starts the service before running the integration test. - Add the name of your integration to the include matrix of the
test-integration
job to Vector's.github/workflows/integration-test.yml
workflow.
Once complete, you can run your integration tests with:
make test-integration-<name>
Vector also offers blackbox testing via Vector's test harness. This is a complex testing suite that tests Vector's performance in real-world environments. It is typically used for benchmarking, but also correctness testing.
You can run these tests within a PR as described in the CI section.
Vector prefers the use of Proptest for any property tests.
Vector is a large project with a plethora of dependencies. Changing to a different branch, or
running cargo clean
, can sometimes necessitate rebuilding many of those dependencies, which has an
impact on productivity. One way to reduce some of this cycle time is to use sccache
, which caches
compilation assets to avoid recompiling them over and over.
sccache
works by being configured to sit in front of rustc
, taking compilation requests from
Cargo and checking the cache to see if it already has the cached compilation unit. It handles
making sure that different compiler flags, versions of Rust, etc., are taken into consideration
before using a cached asset.
In order to use sccache
, you must first install
it. There are pre-built binaries for all major platforms to get you going quickly. The
usage documentation also explains how to set up your
environment to actually use it. We recommend using the $HOME/.cargo/config
approach as this can help
speed up all of your Rust development work, and not just developing on Vector.
While sccache
was originally designed to cache compilation assets in cloud storage, maximizing
reusability amongst CI workers, sccache
actually supports storing assets locally by default.
Local mode works well for local development as it is much easier to delete the cache directory if
you ever encounter issues with the cached assets. It also involves no extra infrastructure or
spending.
If you are developing a particular component and want to quickly iterate on unit tests related only to this component, the following approach can reduce waiting times:
-
Install cargo-watch.
-
(Only for GNU/Linux) Install LLVM 9 (for example, package
llvm-9
on Debian) and setRUSTFLAGS
environment variable to uselld
as the linker:export RUSTFLAGS='-Clinker=clang-9 -Clink-arg=-fuse-ld=lld'
-
Run in the root directory of Vector's source
cargo watch -s clear -s \ 'cargo test --lib --no-default-features --features=<component type>-<component id> <component type>::<component id>'
For example, if the component is
reduce
transform, the command above turns intocargo watch -s clear -s \ 'cargo test --lib --no-default-features --features=transforms-reduce transforms::reduce'
We use flog
to build a sample set of log files to test sending logs from a
file. This can be done with the following commands on Mac with homebrew
.
Installation instruction for flog can be found
here.
flog --bytes $((100 * 1024 * 1024)) > sample.log
This will create a 100MiB
sample log file in the sample.log
file.
All benchmarks are placed in the /benches
folder. You can
run benchmarks via the make bench
command. In addition, Vector
maintains a full test harness
for complex end-to-end integration and performance testing.
If you're trying to improve Vector's performance (or understand why your change made it worse), profiling is a useful tool for seeing where time is being spent.
While there are a bunch of useful profiling tools, a simple place to get started
is with Linux's perf
. Before getting started, you'll likely need to give
yourself access to collect stats:
echo -1 | sudo tee /proc/sys/kernel/perf_event_paranoid
You'll also want to edit Cargo.toml
and make sure that Vector is being built
with debug symbols in release mode. This ensures that you'll get human-readable
info in the eventual output:
[profile.release]
debug = true
Then you can start up a release build of Vector with whatever config you're interested in profiling.
cargo run --release -- --config my_test_config.toml
Once it's started, use the ps
tool (or equivalent) to make a note of its PID.
We'll use this to tell perf
which process we would like it to collect data
about.
The next step is somewhat dependent on the config you're testing. For this
example, let's assume you're using a simple TCP-mode socket source listening on
port 9000. Let's also assume that you have a large file of example input in
access.log
(you can use a tool like flog
to generate this).
With all that prepared, we can send our test input to Vector and collect data while it is under load:
perf record -F99 --call-graph dwarf -p $VECTOR_PID socat -dd OPEN:access.log TCP:localhost:9000
This instructs perf
to collect data from our already-running Vector process
for the duration of the socat
command. The -F
argument is the frequency at
which perf
should sample the Vector call stack. Higher frequencies will
collect more data and produce more detailed output, but can produce enormous
amounts of data that take a very long time to process. Using -F99
works well
when your input data is large enough to take a minute or more to process, but
feel free to adjust both input size and sampling frequency for your setup.
It's worth noting that this is not the normal way to profile programs with
perf
. Usually you would simply run something like perf record my_program
and
not have to worry about PIDs and such. We differ from this because we're only
interested in data about what Vector is doing while under load. Running it
directly under perf
would collect data for the entire lifetime of the process,
including startup, shutdown, and idle time. By telling perf
to collect data
only while the load generation command is running we get a more focused dataset
and don't have to worry about timing different commands in quick succession.
You'll now find a perf.data
file in your current directory with all the
information that was collected. There are different ways to process this, but
one of the most useful is to create
a flamegraph. For this we can
use the inferno
tool (available via cargo install
):
perf script | inferno-collapse-perf > stacks.folded
cat stacks.folded | inferno-flamegraph > flamegraph.svg
And that's it! You now have a flamegraph SVG file that can be opened and navigated in your favorite web browser.
This section contains domain specific development knowledge for various areas of Vector. You should scan this section for any relevant domains for your development area.
The Kubernetes integration architecture is largely inspired by the RFC 2221, so this is a concise outline of the effective design, rather than a deep dive into the concepts.
With kubernetes_logs
source, Vector connects to the Kubernetes API doing
a streaming watch request over the Pod
s executing on the same Node
that
Vector itself runs at. Once Vector gets the list of all the Pod
s that are
running on the Node
, it starts collecting logs for the logs files
corresponding to each of the Pod
. Only plaintext (as in non-gzipped) files
are taken into consideration.
The log files are then parsed into events, and the said events are annotated
with the metadata from the corresponding Pod
s, correlated via the file path
of the originating log file.
The events are then passed to the topology.
We use custom Kubernetes API client and machinery, that lives
at src/kubernetes
.
The kubernetes_logs
source lives at src/sources/kubernetes_logs
.
There is also an end-to-end (E2E) test framework that resides
at lib/k8s-test-framework
, and the actual end-to-end tests using that
framework are at lib/k8s-e2e-tests
.
The Kubernetes-related distribution bit that are at distribution/docker
,
distribution/kubernetes
and our Helm chart can be found at vectordotdev/helm-charts
.
The development assistance resources are located at Tiltfile
and in the tilt
dir.
There is a special flow for when you develop portions of Vector that are
designed to work with Kubernetes, like kubernetes_logs
source or the
deployment/kubernetes/*.yaml
configs.
This flow facilitates building Vector and deploying it into a cluster.
There are some extra requirements besides what you'd normally need to work on Vector:
You can use tilt
to detect changes, rebuild your image, and update your
Kubernetes resource. Simply start your local Kubernetes cluster and run
tilt up
from Vector's root dir.
The Kubernetes integration tests have a lot of parts that can go wrong.
To cope with the complexity and ensure we maintain high quality, we use E2E (end-to-end) tests.
E2E tests normally run at CI, so there's typically no need to run them manually.
kubernetes
cluster (minikube
has special support, but any cluster should work)docker
kubectl
bash
cross
-cargo install cross
helm
Vector release artifacts are prepared for E2E tests, so the ability to do that is required too, see Vector docs for more details.
Notes:
minikube
had a bug in the versions1.12.x
that affected our test process - see kubernetes/minikube#8799. Use version1.13.0+
that has this bug fixed.minikube
has troubles running on ZFS systems. If you're using ZFS, we suggest using a cloud cluster orminik8s
with local registry.- E2E tests expect to have enough resources to perform a full Vector build, usually 8GB of RAM with 2CPUs are sufficient to successfully complete E2E tests locally.
To run the E2E tests, use the following command:
CONTAINER_IMAGE_REPO=<your name>/vector-test make test-e2e-kubernetes
Where CONTAINER_IMAGE_REPO
is the docker image repo name to use, without part
after the :
. Replace <your name>
with your Docker Hub username.
You can also pass additional parameters to adjust the behavior of the test:
-
QUICK_BUILD=true
- use development build and an image from the dev flow instead of a production docker image. Significantly speeds up the preparation process, but doesn't guarantee the correctness in the release build. Useful for development of the tests or Vector code to speed up the iteration cycles. -
USE_MINIKUBE_CACHE=true
- instead of pushing the built docker image to the registry under the specified name, directly load the image into aminikube
-controlled cluster node. Requires you to test against aminikube
cluster. Eliminates the need to have a registry to run tests. WhenUSE_MINIKUBE_CACHE=true
is set, we provide a default value for theCONTAINER_IMAGE_REPO
so it can be omitted. Can be set toauto
(default) to automatically detect whether to useminikube cache
or not, based on the currentkubectl
context. To opt-out, setUSE_MINIKUBE_CACHE=false
. -
CONTAINER_IMAGE=<your name>/vector-test:tag
- completely skip the step of building the Vector docker image, and use the specified image instead. Useful to speed up the iterations speed when you already have a Vector docker image you want to test against. -
SKIP_CONTAINER_IMAGE_PUBLISHING=true
- completely skip the image publishing step. Useful when you want to speed up the iteration speed and when you know the Vector image you want to test is already available to the cluster you're testing against. -
SCOPE
- pass a filter to thecargo test
command to filter out the tests, effectively equivalent tocargo test -- $SCOPE
.
Passing additional commands is done like so:
QUICK_BUILD=true USE_MINIKUBE_CACHE=true make test-e2e-kubernetes
or
QUICK_BUILD=true CONTAINER_IMAGE_REPO=<your name>/vector-test make test-e2e-kubernetes