forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
484 lines (455 loc) · 18.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import math
import random
import logging
import sklearn
import pickle
import numpy as np
import mxnet as mx
from mxnet import ndarray as nd
import argparse
import mxnet.optimizer as optimizer
from config import config, default, generate_config
from metric import *
sys.path.append(os.path.join(os.path.dirname(__file__), 'common'))
import flops_counter
import verification
sys.path.append(os.path.join(os.path.dirname(__file__), 'symbol'))
import fresnet
import fmobilefacenet
import fmobilenet
import fmnasnet
import fdensenet
import vargfacenet
logger = logging.getLogger()
logger.setLevel(logging.INFO)
args = None
def parse_args():
parser = argparse.ArgumentParser(description='Train face network')
# general
parser.add_argument('--dataset',
default=default.dataset,
help='dataset config')
parser.add_argument('--network',
default=default.network,
help='network config')
parser.add_argument('--loss', default=default.loss, help='loss config')
args, rest = parser.parse_known_args()
generate_config(args.network, args.dataset, args.loss)
parser.add_argument('--models-root',
default=default.models_root,
help='root directory to save model.')
parser.add_argument('--pretrained',
default=default.pretrained,
help='pretrained model to load')
parser.add_argument('--pretrained-epoch',
type=int,
default=default.pretrained_epoch,
help='pretrained epoch to load')
parser.add_argument(
'--ckpt',
type=int,
default=default.ckpt,
help=
'checkpoint saving option. 0: discard saving. 1: save when necessary. 2: always save'
)
parser.add_argument(
'--verbose',
type=int,
default=default.verbose,
help='do verification testing and model saving every verbose batches')
parser.add_argument('--lr',
type=float,
default=default.lr,
help='start learning rate')
parser.add_argument('--lr-steps',
type=str,
default=default.lr_steps,
help='steps of lr changing')
parser.add_argument('--wd',
type=float,
default=default.wd,
help='weight decay')
parser.add_argument('--mom',
type=float,
default=default.mom,
help='momentum')
parser.add_argument('--frequent',
type=int,
default=default.frequent,
help='')
parser.add_argument('--per-batch-size',
type=int,
default=default.per_batch_size,
help='batch size in each context')
parser.add_argument('--kvstore',
type=str,
default=default.kvstore,
help='kvstore setting')
args = parser.parse_args()
return args
def get_symbol(args):
embedding = eval(config.net_name).get_symbol()
all_label = mx.symbol.Variable('softmax_label')
gt_label = all_label
is_softmax = True
if config.loss_name == 'softmax': #softmax
_weight = mx.symbol.Variable("fc7_weight",
shape=(config.num_classes,
config.emb_size),
lr_mult=config.fc7_lr_mult,
wd_mult=config.fc7_wd_mult,
init=mx.init.Normal(0.01))
if config.fc7_no_bias:
fc7 = mx.sym.FullyConnected(data=embedding,
weight=_weight,
no_bias=True,
num_hidden=config.num_classes,
name='fc7')
else:
_bias = mx.symbol.Variable('fc7_bias', lr_mult=2.0, wd_mult=0.0)
fc7 = mx.sym.FullyConnected(data=embedding,
weight=_weight,
bias=_bias,
num_hidden=config.num_classes,
name='fc7')
elif config.loss_name == 'margin_softmax':
_weight = mx.symbol.Variable("fc7_weight",
shape=(config.num_classes,
config.emb_size),
lr_mult=config.fc7_lr_mult,
wd_mult=config.fc7_wd_mult,
init=mx.init.Normal(0.01))
s = config.loss_s
_weight = mx.symbol.L2Normalization(_weight, mode='instance')
nembedding = mx.symbol.L2Normalization(
embedding, mode='instance', name='fc1n') * s
fc7 = mx.sym.FullyConnected(data=nembedding,
weight=_weight,
no_bias=True,
num_hidden=config.num_classes,
name='fc7')
if config.loss_m1 != 1.0 or config.loss_m2 != 0.0 or config.loss_m3 != 0.0:
if config.loss_m1 == 1.0 and config.loss_m2 == 0.0:
s_m = s * config.loss_m3
gt_one_hot = mx.sym.one_hot(gt_label,
depth=config.num_classes,
on_value=s_m,
off_value=0.0)
fc7 = fc7 - gt_one_hot
else:
zy = mx.sym.pick(fc7, gt_label, axis=1)
cos_t = zy / s
t = mx.sym.arccos(cos_t)
if config.loss_m1 != 1.0:
t = t * config.loss_m1
if config.loss_m2 > 0.0:
t = t + config.loss_m2
body = mx.sym.cos(t)
if config.loss_m3 > 0.0:
body = body - config.loss_m3
new_zy = body * s
diff = new_zy - zy
diff = mx.sym.expand_dims(diff, 1)
gt_one_hot = mx.sym.one_hot(gt_label,
depth=config.num_classes,
on_value=1.0,
off_value=0.0)
body = mx.sym.broadcast_mul(gt_one_hot, diff)
fc7 = fc7 + body
elif config.loss_name.find('triplet') >= 0:
is_softmax = False
nembedding = mx.symbol.L2Normalization(embedding,
mode='instance',
name='fc1n')
anchor = mx.symbol.slice_axis(nembedding,
axis=0,
begin=0,
end=args.per_batch_size // 3)
positive = mx.symbol.slice_axis(nembedding,
axis=0,
begin=args.per_batch_size // 3,
end=2 * args.per_batch_size // 3)
negative = mx.symbol.slice_axis(nembedding,
axis=0,
begin=2 * args.per_batch_size // 3,
end=args.per_batch_size)
if config.loss_name == 'triplet':
ap = anchor - positive
an = anchor - negative
ap = ap * ap
an = an * an
ap = mx.symbol.sum(ap, axis=1, keepdims=1) #(T,1)
an = mx.symbol.sum(an, axis=1, keepdims=1) #(T,1)
triplet_loss = mx.symbol.Activation(data=(ap - an +
config.triplet_alpha),
act_type='relu')
triplet_loss = mx.symbol.mean(triplet_loss)
else:
ap = anchor * positive
an = anchor * negative
ap = mx.symbol.sum(ap, axis=1, keepdims=1) #(T,1)
an = mx.symbol.sum(an, axis=1, keepdims=1) #(T,1)
ap = mx.sym.arccos(ap)
an = mx.sym.arccos(an)
triplet_loss = mx.symbol.Activation(data=(ap - an +
config.triplet_alpha),
act_type='relu')
triplet_loss = mx.symbol.mean(triplet_loss)
triplet_loss = mx.symbol.MakeLoss(triplet_loss)
out_list = [mx.symbol.BlockGrad(embedding)]
if is_softmax:
softmax = mx.symbol.SoftmaxOutput(data=fc7,
label=gt_label,
name='softmax',
normalization='valid')
out_list.append(softmax)
if config.ce_loss:
#ce_loss = mx.symbol.softmax_cross_entropy(data=fc7, label = gt_label, name='ce_loss')/args.per_batch_size
body = mx.symbol.SoftmaxActivation(data=fc7)
body = mx.symbol.log(body)
_label = mx.sym.one_hot(gt_label,
depth=config.num_classes,
on_value=-1.0,
off_value=0.0)
body = body * _label
ce_loss = mx.symbol.sum(body) / args.per_batch_size
out_list.append(mx.symbol.BlockGrad(ce_loss))
else:
out_list.append(mx.sym.BlockGrad(gt_label))
out_list.append(triplet_loss)
out = mx.symbol.Group(out_list)
return out
def train_net(args):
ctx = []
cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip()
if len(cvd) > 0:
for i in range(len(cvd.split(','))):
ctx.append(mx.gpu(i))
if len(ctx) == 0:
ctx = [mx.cpu()]
print('use cpu')
else:
print('gpu num:', len(ctx))
prefix = os.path.join(args.models_root,
'%s-%s-%s' % (args.network, args.loss, args.dataset),
'model')
prefix_dir = os.path.dirname(prefix)
print('prefix', prefix)
if not os.path.exists(prefix_dir):
os.makedirs(prefix_dir)
args.ctx_num = len(ctx)
args.batch_size = args.per_batch_size * args.ctx_num
args.rescale_threshold = 0
args.image_channel = config.image_shape[2]
config.batch_size = args.batch_size
config.per_batch_size = args.per_batch_size
data_dir = config.dataset_path
path_imgrec = None
path_imglist = None
image_size = config.image_shape[0:2]
assert len(image_size) == 2
assert image_size[0] == image_size[1]
print('image_size', image_size)
print('num_classes', config.num_classes)
path_imgrec = os.path.join(data_dir, "train.rec")
print('Called with argument:', args, config)
data_shape = (args.image_channel, image_size[0], image_size[1])
mean = None
begin_epoch = 0
if len(args.pretrained) == 0:
arg_params = None
aux_params = None
sym = get_symbol(args)
if config.net_name == 'spherenet':
data_shape_dict = {'data': (args.per_batch_size, ) + data_shape}
spherenet.init_weights(sym, data_shape_dict, args.num_layers)
else:
print('loading', args.pretrained, args.pretrained_epoch)
_, arg_params, aux_params = mx.model.load_checkpoint(
args.pretrained, args.pretrained_epoch)
sym = get_symbol(args)
if config.count_flops:
all_layers = sym.get_internals()
_sym = all_layers['fc1_output']
FLOPs = flops_counter.count_flops(_sym,
data=(1, 3, image_size[0],
image_size[1]))
_str = flops_counter.flops_str(FLOPs)
print('Network FLOPs: %s' % _str)
#label_name = 'softmax_label'
#label_shape = (args.batch_size,)
model = mx.mod.Module(
context=ctx,
symbol=sym,
)
val_dataiter = None
if config.loss_name.find('triplet') >= 0:
from triplet_image_iter import FaceImageIter
triplet_params = [
config.triplet_bag_size, config.triplet_alpha,
config.triplet_max_ap
]
train_dataiter = FaceImageIter(
batch_size=args.batch_size,
data_shape=data_shape,
path_imgrec=path_imgrec,
shuffle=True,
rand_mirror=config.data_rand_mirror,
mean=mean,
cutoff=config.data_cutoff,
ctx_num=args.ctx_num,
images_per_identity=config.images_per_identity,
triplet_params=triplet_params,
mx_model=model,
)
_metric = LossValueMetric()
eval_metrics = [mx.metric.create(_metric)]
else:
#from image_iter import FaceImageIter
#train_dataiter = FaceImageIter(
# batch_size=args.batch_size,
# data_shape=data_shape,
# path_imgrec=path_imgrec,
# shuffle=True,
# rand_mirror=config.data_rand_mirror,
# mean=mean,
# cutoff=config.data_cutoff,
# color_jittering=config.data_color,
# images_filter=config.data_images_filter,
#)
from image_iter import get_face_image_iter
train_dataiter = get_face_image_iter(config, data_shape, path_imgrec)
metric1 = AccMetric()
eval_metrics = [mx.metric.create(metric1)]
if config.ce_loss:
metric2 = LossValueMetric()
eval_metrics.append(mx.metric.create(metric2))
if config.net_name == 'fresnet' or config.net_name == 'fmobilefacenet':
initializer = mx.init.Xavier(rnd_type='gaussian',
factor_type="out",
magnitude=2) #resnet style
else:
initializer = mx.init.Xavier(rnd_type='uniform',
factor_type="in",
magnitude=2)
#initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style
_rescale = 1.0 / args.ctx_num
opt = optimizer.SGD(learning_rate=args.lr,
momentum=args.mom,
wd=args.wd,
rescale_grad=_rescale)
_cb = mx.callback.Speedometer(args.batch_size, args.frequent)
ver_list = []
ver_name_list = []
for name in config.val_targets:
path = os.path.join(data_dir, name + ".bin")
if os.path.exists(path):
data_set = verification.load_bin(path, image_size)
ver_list.append(data_set)
ver_name_list.append(name)
print('ver', name)
def ver_test(nbatch):
results = []
for i in range(len(ver_list)):
acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test(
ver_list[i], model, args.batch_size, 10, None, None)
print('[%s][%d]XNorm: %f' % (ver_name_list[i], nbatch, xnorm))
#print('[%s][%d]Accuracy: %1.5f+-%1.5f' % (ver_name_list[i], nbatch, acc1, std1))
print('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' %
(ver_name_list[i], nbatch, acc2, std2))
results.append(acc2)
return results
highest_acc = [0.0, 0.0] #lfw and target
#for i in range(len(ver_list)):
# highest_acc.append(0.0)
global_step = [0]
save_step = [0]
lr_steps = [int(x) for x in args.lr_steps.split(',')]
print('lr_steps', lr_steps)
def _batch_callback(param):
#global global_step
global_step[0] += 1
mbatch = global_step[0]
for step in lr_steps:
if mbatch == step:
opt.lr *= 0.1
print('lr change to', opt.lr)
break
_cb(param)
if mbatch % 1000 == 0:
print('lr-batch-epoch:', opt.lr, param.nbatch, param.epoch)
if mbatch >= 0 and mbatch % args.verbose == 0:
acc_list = ver_test(mbatch)
save_step[0] += 1
msave = save_step[0]
do_save = False
is_highest = False
if len(acc_list) > 0:
#lfw_score = acc_list[0]
#if lfw_score>highest_acc[0]:
# highest_acc[0] = lfw_score
# if lfw_score>=0.998:
# do_save = True
score = sum(acc_list)
if acc_list[-1] >= highest_acc[-1]:
if acc_list[-1] > highest_acc[-1]:
is_highest = True
else:
if score >= highest_acc[0]:
is_highest = True
highest_acc[0] = score
highest_acc[-1] = acc_list[-1]
#if lfw_score>=0.99:
# do_save = True
if is_highest:
do_save = True
if args.ckpt == 0:
do_save = False
elif args.ckpt == 2:
do_save = True
elif args.ckpt == 3:
msave = 1
if do_save:
print('saving', msave)
arg, aux = model.get_params()
if config.ckpt_embedding:
all_layers = model.symbol.get_internals()
_sym = all_layers['fc1_output']
_arg = {}
for k in arg:
if not k.startswith('fc7'):
_arg[k] = arg[k]
mx.model.save_checkpoint(prefix, msave, _sym, _arg, aux)
else:
mx.model.save_checkpoint(prefix, msave, model.symbol, arg,
aux)
print('[%d]Accuracy-Highest: %1.5f' % (mbatch, highest_acc[-1]))
if config.max_steps > 0 and mbatch > config.max_steps:
sys.exit(0)
epoch_cb = None
model.fit(
train_dataiter,
begin_epoch=begin_epoch,
num_epoch=999999,
eval_data=val_dataiter,
eval_metric=eval_metrics,
kvstore=args.kvstore,
optimizer=opt,
#optimizer_params = optimizer_params,
initializer=initializer,
arg_params=arg_params,
aux_params=aux_params,
allow_missing=True,
batch_end_callback=_batch_callback,
epoch_end_callback=epoch_cb)
def main():
global args
args = parse_args()
train_net(args)
if __name__ == '__main__':
main()