forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
verification.py
680 lines (625 loc) · 25.7 KB
/
verification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
"""Helper for evaluation on the Labeled Faces in the Wild dataset
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import sys
import numpy as np
from scipy import misc
from sklearn.model_selection import KFold
from scipy import interpolate
import sklearn
import cv2
import math
import datetime
import pickle
from sklearn.decomposition import PCA
import mxnet as mx
from mxnet import ndarray as nd
class LFold:
def __init__(self, n_splits=2, shuffle=False):
self.n_splits = n_splits
if self.n_splits > 1:
self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle)
def split(self, indices):
if self.n_splits > 1:
return self.k_fold.split(indices)
else:
return [(indices, indices)]
def calculate_roc(thresholds,
embeddings1,
embeddings2,
actual_issame,
nrof_folds=10,
pca=0):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
#print('pca', pca)
if pca == 0:
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
#print('train_set', train_set)
#print('test_set', test_set)
if pca > 0:
print('doing pca on', fold_idx)
embed1_train = embeddings1[train_set]
embed2_train = embeddings2[train_set]
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
#print(_embed_train.shape)
pca_model = PCA(n_components=pca)
pca_model.fit(_embed_train)
embed1 = pca_model.transform(embeddings1)
embed2 = pca_model.transform(embeddings2)
embed1 = sklearn.preprocessing.normalize(embed1)
embed2 = sklearn.preprocessing.normalize(embed2)
#print(embed1.shape, embed2.shape)
diff = np.subtract(embed1, embed2)
dist = np.sum(np.square(diff), 1)
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(
threshold, dist[train_set], actual_issame[train_set])
best_threshold_index = np.argmax(acc_train)
#print('threshold', thresholds[best_threshold_index])
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx,
threshold_idx], fprs[fold_idx,
threshold_idx], _ = calculate_accuracy(
threshold, dist[test_set],
actual_issame[test_set])
_, _, accuracy[fold_idx] = calculate_accuracy(
thresholds[best_threshold_index], dist[test_set],
actual_issame[test_set])
tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
return tpr, fpr, accuracy
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(
np.logical_and(np.logical_not(predict_issame),
np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
acc = float(tp + tn) / dist.size
return tpr, fpr, acc
def calculate_val(thresholds,
embeddings1,
embeddings2,
actual_issame,
far_target,
nrof_folds=10):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
indices = np.arange(nrof_pairs)
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(
threshold, dist[train_set], actual_issame[train_set])
if np.max(far_train) >= far_target:
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
threshold = f(far_target)
else:
threshold = 0.0
val[fold_idx], far[fold_idx] = calculate_val_far(
threshold, dist[test_set], actual_issame[test_set])
val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean
def calculate_val_far(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
false_accept = np.sum(
np.logical_and(predict_issame, np.logical_not(actual_issame)))
n_same = np.sum(actual_issame)
n_diff = np.sum(np.logical_not(actual_issame))
#print(true_accept, false_accept)
#print(n_same, n_diff)
val = float(true_accept) / float(n_same)
far = float(false_accept) / float(n_diff)
return val, far
def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
# Calculate evaluation metrics
thresholds = np.arange(0, 4, 0.01)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
nrof_folds=nrof_folds,
pca=pca)
thresholds = np.arange(0, 4, 0.001)
val, val_std, far = calculate_val(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
1e-3,
nrof_folds=nrof_folds)
return tpr, fpr, accuracy, val, val_std, far
def load_bin(path, image_size):
try:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f) #py2
except UnicodeDecodeError as e:
with open(path, 'rb') as f:
bins, issame_list = pickle.load(f, encoding='bytes') #py3
data_list = []
for flip in [0, 1]:
data = nd.empty(
(len(issame_list) * 2, 3, image_size[0], image_size[1]))
data_list.append(data)
for i in range(len(issame_list) * 2):
_bin = bins[i]
img = mx.image.imdecode(_bin)
if img.shape[1] != image_size[0]:
img = mx.image.resize_short(img, image_size[0])
img = nd.transpose(img, axes=(2, 0, 1))
for flip in [0, 1]:
if flip == 1:
img = mx.ndarray.flip(data=img, axis=2)
data_list[flip][i][:] = img
if i % 1000 == 0:
print('loading bin', i)
print(data_list[0].shape)
return (data_list, issame_list)
def test(data_set,
mx_model,
batch_size,
nfolds=10,
data_extra=None,
label_shape=None):
print('testing verification..')
data_list = data_set[0]
issame_list = data_set[1]
model = mx_model
embeddings_list = []
if data_extra is not None:
_data_extra = nd.array(data_extra)
time_consumed = 0.0
if label_shape is None:
_label = nd.ones((batch_size, ))
else:
_label = nd.ones(label_shape)
for i in range(len(data_list)):
data = data_list[i]
embeddings = None
ba = 0
while ba < data.shape[0]:
bb = min(ba + batch_size, data.shape[0])
count = bb - ba
_data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb)
#print(_data.shape, _label.shape)
time0 = datetime.datetime.now()
if data_extra is None:
db = mx.io.DataBatch(data=(_data, ), label=(_label, ))
else:
db = mx.io.DataBatch(data=(_data, _data_extra),
label=(_label, ))
model.forward(db, is_train=False)
net_out = model.get_outputs()
#_arg, _aux = model.get_params()
#__arg = {}
#for k,v in _arg.iteritems():
# __arg[k] = v.as_in_context(_ctx)
#_arg = __arg
#_arg["data"] = _data.as_in_context(_ctx)
#_arg["softmax_label"] = _label.as_in_context(_ctx)
#for k,v in _arg.iteritems():
# print(k,v.context)
#exe = sym.bind(_ctx, _arg ,args_grad=None, grad_req="null", aux_states=_aux)
#exe.forward(is_train=False)
#net_out = exe.outputs
_embeddings = net_out[0].asnumpy()
time_now = datetime.datetime.now()
diff = time_now - time0
time_consumed += diff.total_seconds()
#print(_embeddings.shape)
if embeddings is None:
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
ba = bb
embeddings_list.append(embeddings)
_xnorm = 0.0
_xnorm_cnt = 0
for embed in embeddings_list:
for i in range(embed.shape[0]):
_em = embed[i]
_norm = np.linalg.norm(_em)
#print(_em.shape, _norm)
_xnorm += _norm
_xnorm_cnt += 1
_xnorm /= _xnorm_cnt
embeddings = embeddings_list[0].copy()
embeddings = sklearn.preprocessing.normalize(embeddings)
acc1 = 0.0
std1 = 0.0
#_, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=10)
#acc1, std1 = np.mean(accuracy), np.std(accuracy)
#print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))
#embeddings = np.concatenate(embeddings_list, axis=1)
embeddings = embeddings_list[0] + embeddings_list[1]
embeddings = sklearn.preprocessing.normalize(embeddings)
print(embeddings.shape)
print('infer time', time_consumed)
_, _, accuracy, val, val_std, far = evaluate(embeddings,
issame_list,
nrof_folds=nfolds)
acc2, std2 = np.mean(accuracy), np.std(accuracy)
return acc1, std1, acc2, std2, _xnorm, embeddings_list
def test_badcase(data_set,
mx_model,
batch_size,
name='',
data_extra=None,
label_shape=None):
print('testing verification badcase..')
data_list = data_set[0]
issame_list = data_set[1]
model = mx_model
embeddings_list = []
if data_extra is not None:
_data_extra = nd.array(data_extra)
time_consumed = 0.0
if label_shape is None:
_label = nd.ones((batch_size, ))
else:
_label = nd.ones(label_shape)
for i in range(len(data_list)):
data = data_list[i]
embeddings = None
ba = 0
while ba < data.shape[0]:
bb = min(ba + batch_size, data.shape[0])
count = bb - ba
_data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb)
#print(_data.shape, _label.shape)
time0 = datetime.datetime.now()
if data_extra is None:
db = mx.io.DataBatch(data=(_data, ), label=(_label, ))
else:
db = mx.io.DataBatch(data=(_data, _data_extra),
label=(_label, ))
model.forward(db, is_train=False)
net_out = model.get_outputs()
_embeddings = net_out[0].asnumpy()
time_now = datetime.datetime.now()
diff = time_now - time0
time_consumed += diff.total_seconds()
if embeddings is None:
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
ba = bb
embeddings_list.append(embeddings)
embeddings = embeddings_list[0] + embeddings_list[1]
embeddings = sklearn.preprocessing.normalize(embeddings)
thresholds = np.arange(0, 4, 0.01)
actual_issame = np.asarray(issame_list)
nrof_folds = 10
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = LFold(n_splits=nrof_folds, shuffle=False)
tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
data = data_list[0]
pouts = []
nouts = []
for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
#print(train_set)
#print(train_set.__class__)
for threshold_idx, threshold in enumerate(thresholds):
p2 = dist[train_set]
p3 = actual_issame[train_set]
_, _, acc_train[threshold_idx] = calculate_accuracy(
threshold, p2, p3)
best_threshold_index = np.argmax(acc_train)
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx,
threshold_idx], fprs[fold_idx,
threshold_idx], _ = calculate_accuracy(
threshold, dist[test_set],
actual_issame[test_set])
_, _, accuracy[fold_idx] = calculate_accuracy(
thresholds[best_threshold_index], dist[test_set],
actual_issame[test_set])
best_threshold = thresholds[best_threshold_index]
for iid in test_set:
ida = iid * 2
idb = ida + 1
asame = actual_issame[iid]
_dist = dist[iid]
violate = _dist - best_threshold
if not asame:
violate *= -1.0
if violate > 0.0:
imga = data[ida].asnumpy().transpose(
(1, 2, 0))[..., ::-1] #to bgr
imgb = data[idb].asnumpy().transpose((1, 2, 0))[..., ::-1]
#print(imga.shape, imgb.shape, violate, asame, _dist)
if asame:
pouts.append((imga, imgb, _dist, best_threshold, ida))
else:
nouts.append((imga, imgb, _dist, best_threshold, ida))
tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
acc = np.mean(accuracy)
pouts = sorted(pouts, key=lambda x: x[2], reverse=True)
nouts = sorted(nouts, key=lambda x: x[2], reverse=False)
print(len(pouts), len(nouts))
print('acc', acc)
gap = 10
image_shape = (112, 224, 3)
out_dir = "./badcases"
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if len(nouts) > 0:
threshold = nouts[0][3]
else:
threshold = pouts[-1][3]
for item in [(pouts, 'positive(false_negative).png'),
(nouts, 'negative(false_positive).png')]:
cols = 4
rows = 8000
outs = item[0]
if len(outs) == 0:
continue
#if len(outs)==9:
# cols = 3
# rows = 3
_rows = int(math.ceil(len(outs) / cols))
rows = min(rows, _rows)
hack = {}
if name.startswith('cfp') and item[1].startswith('pos'):
hack = {
0: 'manual/238_13.jpg.jpg',
6: 'manual/088_14.jpg.jpg',
10: 'manual/470_14.jpg.jpg',
25: 'manual/238_13.jpg.jpg',
28: 'manual/143_11.jpg.jpg'
}
filename = item[1]
if len(name) > 0:
filename = name + "_" + filename
filename = os.path.join(out_dir, filename)
img = np.zeros((image_shape[0] * rows + 20, image_shape[1] * cols +
(cols - 1) * gap, 3),
dtype=np.uint8)
img[:, :, :] = 255
text_color = (0, 0, 153)
text_color = (255, 178, 102)
text_color = (153, 255, 51)
for outi, out in enumerate(outs):
row = outi // cols
col = outi % cols
if row == rows:
break
imga = out[0].copy()
imgb = out[1].copy()
if outi in hack:
idx = out[4]
print('noise idx', idx)
aa = hack[outi]
imgb = cv2.imread(aa)
#if aa==1:
# imgb = cv2.transpose(imgb)
# imgb = cv2.flip(imgb, 1)
#elif aa==3:
# imgb = cv2.transpose(imgb)
# imgb = cv2.flip(imgb, 0)
#else:
# for ii in range(2):
# imgb = cv2.transpose(imgb)
# imgb = cv2.flip(imgb, 1)
dist = out[2]
_img = np.concatenate((imga, imgb), axis=1)
k = "%.3f" % dist
#print(k)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(_img, k, (80, image_shape[0] // 2 + 7), font, 0.6,
text_color, 2)
#_filename = filename+"_%d.png"%outi
#cv2.imwrite(_filename, _img)
img[row * image_shape[0]:(row + 1) * image_shape[0],
(col * image_shape[1] +
gap * col):((col + 1) * image_shape[1] + gap * col), :] = _img
#threshold = outs[0][3]
font = cv2.FONT_HERSHEY_SIMPLEX
k = "threshold: %.3f" % threshold
cv2.putText(img, k, (img.shape[1] // 2 - 70, img.shape[0] - 5), font,
0.6, text_color, 2)
cv2.imwrite(filename, img)
def dumpR(data_set,
mx_model,
batch_size,
name='',
data_extra=None,
label_shape=None):
print('dump verification embedding..')
data_list = data_set[0]
issame_list = data_set[1]
model = mx_model
embeddings_list = []
if data_extra is not None:
_data_extra = nd.array(data_extra)
time_consumed = 0.0
if label_shape is None:
_label = nd.ones((batch_size, ))
else:
_label = nd.ones(label_shape)
for i in range(len(data_list)):
data = data_list[i]
embeddings = None
ba = 0
while ba < data.shape[0]:
bb = min(ba + batch_size, data.shape[0])
count = bb - ba
_data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb)
#print(_data.shape, _label.shape)
time0 = datetime.datetime.now()
if data_extra is None:
db = mx.io.DataBatch(data=(_data, ), label=(_label, ))
else:
db = mx.io.DataBatch(data=(_data, _data_extra),
label=(_label, ))
model.forward(db, is_train=False)
net_out = model.get_outputs()
_embeddings = net_out[0].asnumpy()
time_now = datetime.datetime.now()
diff = time_now - time0
time_consumed += diff.total_seconds()
if embeddings is None:
embeddings = np.zeros((data.shape[0], _embeddings.shape[1]))
embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :]
ba = bb
embeddings_list.append(embeddings)
embeddings = embeddings_list[0] + embeddings_list[1]
embeddings = sklearn.preprocessing.normalize(embeddings)
actual_issame = np.asarray(issame_list)
outname = os.path.join('temp.bin')
with open(outname, 'wb') as f:
pickle.dump((embeddings, issame_list),
f,
protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='do verification')
# general
parser.add_argument('--data-dir', default='', help='')
parser.add_argument('--model',
default='../model/softmax,50',
help='path to load model.')
parser.add_argument('--target',
default='lfw,cfp_ff,cfp_fp,agedb_30',
help='test targets.')
parser.add_argument('--gpu', default=0, type=int, help='gpu id')
parser.add_argument('--batch-size', default=32, type=int, help='')
parser.add_argument('--max', default='', type=str, help='')
parser.add_argument('--mode', default=0, type=int, help='')
parser.add_argument('--nfolds', default=10, type=int, help='')
args = parser.parse_args()
#sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common'))
#import face_image
#prop = face_image.load_property(args.data_dir)
#image_size = prop.image_size
image_size = [112, 112]
print('image_size', image_size)
ctx = mx.gpu(args.gpu)
nets = []
vec = args.model.split(',')
prefix = args.model.split(',')[0]
epochs = []
if len(vec) == 1:
pdir = os.path.dirname(prefix)
for fname in os.listdir(pdir):
if not fname.endswith('.params'):
continue
_file = os.path.join(pdir, fname)
if _file.startswith(prefix):
epoch = int(fname.split('.')[0].split('-')[1])
epochs.append(epoch)
epochs = sorted(epochs, reverse=True)
if len(args.max) > 0:
_max = [int(x) for x in args.max.split(',')]
assert len(_max) == 2
if len(epochs) > _max[1]:
epochs = epochs[_max[0]:_max[1]]
else:
epochs = [int(x) for x in vec[1].split('|')]
print('model number', len(epochs))
time0 = datetime.datetime.now()
for epoch in epochs:
print('loading', prefix, epoch)
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
#arg_params, aux_params = ch_dev(arg_params, aux_params, ctx)
all_layers = sym.get_internals()
sym = all_layers['fc1_output']
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
#model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))])
model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0],
image_size[1]))])
model.set_params(arg_params, aux_params)
nets.append(model)
time_now = datetime.datetime.now()
diff = time_now - time0
print('model loading time', diff.total_seconds())
ver_list = []
ver_name_list = []
for name in args.target.split(','):
path = os.path.join(args.data_dir, name + ".bin")
if os.path.exists(path):
print('loading.. ', name)
data_set = load_bin(path, image_size)
ver_list.append(data_set)
ver_name_list.append(name)
if args.mode == 0:
for i in range(len(ver_list)):
results = []
for model in nets:
acc1, std1, acc2, std2, xnorm, embeddings_list = test(
ver_list[i], model, args.batch_size, args.nfolds)
print('[%s]XNorm: %f' % (ver_name_list[i], xnorm))
print('[%s]Accuracy: %1.5f+-%1.5f' %
(ver_name_list[i], acc1, std1))
print('[%s]Accuracy-Flip: %1.5f+-%1.5f' %
(ver_name_list[i], acc2, std2))
results.append(acc2)
print('Max of [%s] is %1.5f' % (ver_name_list[i], np.max(results)))
elif args.mode == 1:
model = nets[0]
test_badcase(ver_list[0], model, args.batch_size, args.target)
else:
model = nets[0]
dumpR(ver_list[0], model, args.batch_size, args.target)