forked from LREN-CHUV/algorithm-repository
-
Notifications
You must be signed in to change notification settings - Fork 5
/
anova.py
executable file
·116 lines (88 loc) · 3.68 KB
/
anova.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
# Copyright (C) 2017 LREN CHUV for Human Brain Project
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from mip_helper import io_helper, errors, utils
from mip_helper.shapes import Shapes
from mip_helper.parameters import get_parameter
import logging
import json
from pandas import DataFrame
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
DESIGN_PARAM = "design"
DEFAULT_DESIGN = "factorial"
MAX_FACTORIAL_COVARIABLES = 8
DEFAULT_DOCKER_IMAGE = "python-anova"
@utils.catch_user_error
def main():
# Configure logging
logging.basicConfig(level=logging.INFO)
# Read inputs
inputs = io_helper.fetch_data()
dep_var = inputs["data"]["dependent"][0]
inped_vars = inputs["data"]["independent"]
design = get_parameter(DESIGN_PARAM, str, DEFAULT_DESIGN)
# Check dependent variable type (should be continuous)
if dep_var["type"]["name"] not in ["integer", "real"]:
raise errors.UserError('Dependent variable should be continuous!')
# Extract data and parameters from inputs
data = format_data(inputs["data"])
# Compute anova and generate PFA output
anova_results = format_output(compute_anova(dep_var, inped_vars, data, design).to_dict())
# Store results
io_helper.save_results(anova_results, Shapes.JSON)
def format_data(input_data):
all_vars = input_data["dependent"] + input_data["independent"]
data = {v["name"]: v["series"] for v in all_vars}
return data
def format_output(statsmodels_dict):
return json.dumps(DataFrame.from_dict(statsmodels_dict).transpose().fillna("NaN").to_dict())
def compute_anova(dep_var, indep_vars, data, design='factorial'):
formula = generate_formula(dep_var, indep_vars, design)
logging.info("Formula: %s" % formula)
data = DataFrame(data)
if data.empty:
raise errors.UserError('SQL returned no data, check your dataset and null values.')
lm = ols(data=data, formula=formula).fit()
logging.info(lm.summary())
if lm.df_resid == 0:
raise errors.UserError(
'Too many factors ({}) for too little data ({}). Use less covariables or different design.'.format(
len(lm.params), len(data)
)
)
return anova_lm(lm)
def generate_formula(dep_var, indep_vars, design):
if design == 'additive':
op = " + "
elif design == 'factorial':
op = " * "
else:
raise errors.UserError("Invalid design parameter : %s" % design)
if design == 'factorial' and len(indep_vars) >= MAX_FACTORIAL_COVARIABLES:
raise errors.UserError(
'You can use at most {} covariables with factorial design ({} was used)'.format(
MAX_FACTORIAL_COVARIABLES, len(indep_vars)
)
)
dep_var = dep_var["name"]
indep_vars = [
v["name"] if v["type"]["name"] in ["integer", "real"] else str.format("C(%s)" % v["name"]) for v in indep_vars
]
indep_vars = op.join(indep_vars)
indep_vars = indep_vars.strip(op)
return str.format("%s ~ %s" % (dep_var, indep_vars))
if __name__ == '__main__':
main()