-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_pretrain.py
437 lines (374 loc) · 18.9 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset
import torchvision.transforms as transforms
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from PIL import Image
from PIL import ImageEnhance
Image.LOAD_TRUNCATED_IMAGES = True
from llama.llama_adapter import LLaMA_adapter
import random
import deepspeed
import argparse
import datetime
import json
import numpy as np
import os
import time
import cv2
from pathlib import Path
from engine_pretrain import train_one_epoch, val_one_epoch
from llama import Tokenizer
import fundus_prep as prep
import copy
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
OPTION_DICT = {
0: "A. normal",
1: "B. other diseases",
2: "C. arteriovenous ratio",
3: "D. cup-to-disc ratio",
4: "E. glaucoma",
5: "F. myopia",
6: "G. diabetic retinopathy",
7: "H. age-related macular degeneration"
}
class CaptionCOCO(Dataset):
def __init__(self, transform, max_words=512, partition='train', tokenizer_path=None):
# ann = json.load(open("/cpfs01/shared/Gvlab-A100/Gvlab-A100_hdd/lizihan/MLLM_Dataset/imagebank/imagebank_Clean.json"))
# ann += json.load(open("/cpfs01/shared/Gvlab-A100/Gvlab-A100_hdd/lizihan/PMC-OA-Full/PMC_Clean.json"))
if partition == 'train':
# self.ann = ann
ann = json.load(open("/cpfs01/user/lizihan/Dataset/-MLLM-Fundus/All_json/GPT_RITE40_Train20.json"))
fileHandler = open ("/cpfs01/user/lizihan/Trainset_list_updated.txt", "r")
listOfLines = fileHandler.readlines()
for line in listOfLines:
ann += json.load(open(line.strip()))
self.ann = ann
self.data_dict = {}
else:
ann = json.load(open("/cpfs01/user/lizihan/Dataset/-MLLM-Fundus/All_json/GPT_RITE40_Test20.json"))
fileHandler = open ("/cpfs01/user/lizihan/Valset_list_updated.txt", "r")
listOfLines = fileHandler.readlines()
for line in listOfLines:
ann += json.load(open(line.strip()))
self.ann = ann
self.data_dict = {}
# sample_num = 10000
# self.ann = random.sample(ann, sample_num)
self.transform = transform
self.max_words = max_words
self.max_keywords = 32
tokenizer = Tokenizer(model_path=tokenizer_path)
self.tokenizer1 = tokenizer
def __len__(self):
return len(self.ann)
def get_qa(self, orig_qa):
qa = orig_qa.replace('\n\n', '\n')
qa_list = qa.split('\n')
qa_list = [sentence[6:] for sentence in qa_list]
return qa_list
def __getitem__(self, index):
labels_cls = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
data_item = self.ann[index]
if data_item['Keyword'][0] == 'A':
labels_cls[0] = 1.0
if 'FHE_label' in data_item.keys():
if float(data_item['FHE_label']) > 0:
labels_cls[1] = 1.0
labels_cls[0] = 0.0
if 'OCD_label' in data_item.keys():
if float(data_item['OCD_label']) > 0:
labels_cls[2] = 1.0
labels_cls[0] = 0.0
if 'FBC_label' in data_item.keys():
if float(data_item['FBC_label']) > 0:
labels_cls[3] = 1.0
labels_cls[0] = 0.0
if 'Macular_label' in data_item.keys():
if float(data_item['Macular_label']) > 0:
labels_cls[4] = 1.0
labels_cls[0] = 0.0
if 'AV_label' in data_item.keys():
if float(data_item['AV_label']) > 0:
labels_cls[5] = 1.0
labels_cls[0] = 0.0
if 'ImageID' in data_item.keys():
url = data_item['ImageID']
# self.data_dict[url] = self.data_dict.get(url, 0) + 1
question = data_item['Instruction'] # + " Please choose from the following options: A. normal, B. other diseases, C. arteriovenous ratio, D. cup-to-disc ratio, E. glaucoma, F. myopia, G. diabetic retinopathy, H. age-related macular degeneration."
answer = data_item['Answer'] # + " The answer is " + OPTION_DICT[int(labels_cls[0])] + "."
if 'Instruction0' in data_item.keys():
question0 = data_item['Instruction0']
answer0 = data_item['Answer0']
question1 = data_item['Instruction1']
answer1 = data_item['Answer1']
else:
question0 = " "
answer0 = " "
question1 = " "
answer1 = " "
Keyword = data_item['Keyword']
filename = url
image = Image.open(filename).convert('RGB')
image = ImageEnhance.Contrast(image)
image = image.enhance(1.3)
image = np.array(image)
min_R = np.min(image[:,:,0])
min_G = np.min(image[:,:,1])
min_B = np.min(image[:,:,2])
image[:,:,0] = image[:,:,0] - min_R +1
image[:,:,1] = image[:,:,1] - min_G +1
image[:,:,2] = image[:,:,2] - min_B +1
image = Image.fromarray(image.astype('uint8')).convert('HSV')
image = self.transform(image)
# input1 = question
question = {'instruction': question}
question0 = {'instruction': question0}
question1 = {'instruction': question1}
elif 'image' in data_item.keys():
url = data_item['image']
question = "This is a "+ data_item['modality']+ " image. "+data_item['question']
answer = data_item['caption']
filename = "/cpfs01/shared/Gvlab-A100/Gvlab-A100_hdd/lizihan/PMC-OA-Full/images_full/image_only/" + url
try:
image = Image.open(filename).convert('RGB')
except:
filename = "/cpfs01/shared/Gvlab-A100/Gvlab-A100_hdd/lizihan/PMC-OA-Full/images_full/image_duplicate/" + url
image = Image.open(filename).convert('RGB')
# image = cv2.imread(filename)
# image = Image.fromarray(image)
image = self.transform(image)
input1 = {'instruction': question}
elif 'img_id' in data_item.keys():
url = data_item['img_id']
question = "This is a "+ data_item['modality']+ " image. "+data_item['question']
answer = data_item['answer']
filename = "/cpfs01/shared/Gvlab-A100/Gvlab-A100_hdd/lizihan/MLLM_Dataset/imagebank/imagebank_image/" + url +'.jpg'
try:
image = Image.open(filename).convert('RGB')
image = self.transform(image)
input1 = {'instruction': question}
except:
print('Truncated image: '+str(data_item['img_id']))
# image = cv2.imread(filename)
# image = Image.fromarray(image)
else:
image = torch.zeros(3, 448, 448)
# input1 = {'instruction': data_item['instruction'], 'input': data_item['input']}
input1 = data_item['instruction']
Keyword = data_item['Keyword']
answer = data_item['output']
# input1 = PROMPT_DICT['prompt_no_input'].format_map(input1)
question = PROMPT_DICT['prompt_no_input'].format_map(question)
question0 = PROMPT_DICT['prompt_no_input'].format_map(question0)
question1 = PROMPT_DICT['prompt_no_input'].format_map(question1)
input2 = question + answer + question0 + answer0 + question1 + answer1
question_index = torch.tensor(self.tokenizer1.encode(question, bos=True, eos=False), dtype=torch.int64)
answer_index = torch.tensor(self.tokenizer1.encode(question+answer, bos=True, eos=False), dtype=torch.int64)
question0_index = torch.tensor(self.tokenizer1.encode(question+answer+question0, bos=True, eos=False), dtype=torch.int64)
answer0_index = torch.tensor(self.tokenizer1.encode(question+answer+question0+answer0, bos=True, eos=False), dtype=torch.int64)
question1_index = torch.tensor(self.tokenizer1.encode(question+answer+question0+answer0+question1, bos=True, eos=False), dtype=torch.int64)
input2 = torch.tensor(self.tokenizer1.encode(input2, bos=True, eos=True), dtype=torch.int64)
padding = self.max_words - input2.shape[0]
if padding > 0:
input2 = torch.cat((input2, torch.zeros(padding, dtype=torch.int64) - 1))
elif padding < 0:
input2 = input2[:self.max_words]
labels = copy.deepcopy(input2)
labels[:len(question_index)] = -1
labels[len(answer_index):len(question0_index)] = -1
if len(question1_index) >= self.max_words:
labels[len(answer0_index):] = -1
else:
labels[len(answer0_index):len(question1_index)] = -1
input2_mask = input2.ge(0)
label_mask = labels.ge(0)
input2[~input2_mask] = 0
labels[~label_mask] = 0
input2_mask = input2_mask.float()
label_mask = label_mask.float()
# return input2, labels, input2_mask, image
return input2, labels, labels_cls, image, Keyword
def get_args_parser():
parser = argparse.ArgumentParser('imagebind-llm pre-training', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=400, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='mae_vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train') # llama-adapter: currently no use
parser.add_argument('--llama_path', default='/path/to/llama', type=str,
help='path to LLaMA pretrained checkpoint')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--clip_grad', type=int, default=-1,
help='grad clipping norm')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=12, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--use_checkpoint', default=False, type=bool)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# define the model
llama_type = "7B"
llama_ckpt_dir = os.path.join(args.llama_path, llama_type)
llama_tokenzier_path = os.path.join(llama_ckpt_dir, 'tokenizer.model')
model = LLaMA_adapter(llama_ckpt_dir, llama_tokenzier_path)
model.to(device)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
print("Trainable Params:")
print([(key, val.shape) for key, val in model.get_trainable_params().items()])
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# training detail
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
param_groups = misc.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
# print(optimizer)
loss_scaler = NativeScaler()
# optionally resume
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
# create data
transform_train = transforms.Compose([
transforms.RandomResizedCrop(size=(448, 448), scale=(0.9, 1.0), ratio=(0.75, 1.3333), interpolation=BICUBIC,
antialias=None), # 3 is bicubic
transforms.ToTensor(),
# transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])])
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
dataset_train = CaptionCOCO(transform=transform_train, max_words=512, partition='train', tokenizer_path=llama_tokenzier_path)
dataset_val = CaptionCOCO(transform=transform_train, max_words=512, partition='val', tokenizer_path=llama_tokenzier_path)
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# SummaryWrite
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
torch.cuda.reset_peak_memory_stats()
torch.cuda.empty_cache()
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
data_loader_val.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
# if args.output_dir and ((epoch+1) % 5 == 0 or (epoch + 1) == args.epochs):
if args.output_dir and ((epoch+1) % 5 == 0 ):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
**{f'val_{k}': v for k, v in train_stats.items()}}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)