-
Notifications
You must be signed in to change notification settings - Fork 1
/
word_seq2seq.py
248 lines (179 loc) · 7.75 KB
/
word_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from keras.models import Model
from keras.layers import Input, LSTM, Embedding, Dense
from keras.utils.vis_utils import plot_model
from keras.preprocessing.text import text_to_word_sequence
import numpy as np
'''
Training setting
epochs = 50, num_samples = 10000
'''
batch_size = 64 # Batch size for training.
epochs = 50 # Number of epochs to train for. Iterations count of the loop of the training
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.
# Path to the data txt file on disk.
data_path = 'twitter_data.txt'
# Vectorize the data.
input_texts = [[]]
target_texts = [[]]
input_words = set()
target_words = set()
lines = open(data_path).read().split('\n')
'''
Word tokenization for input and output sentences
'''
for line in lines[: min(num_samples, len(lines) - 1)]:
# Get context and response separately
input_text, target_text = line.split('\t')
# We use "startofasentence" as the "start sequence" word
# for the targets, and "endofasentence" as "end sequence" word.
target_text = 'startofasentence' + target_text + ' endofasentence'
# text to word sequence
input_text = text_to_word_sequence(input_text)
target_text = text_to_word_sequence(target_text)
input_texts.append(input_text)
target_texts.append(target_text)
# Word tokenization
for word in input_text:
if word not in input_words:
input_words.add(word)
for word in target_text:
if word not in target_words:
target_words.add(word)
# Get the freq of each word
input_words = sorted(list(input_words))
target_words = sorted(list(target_words))
# Remove the first empty elt
input_texts = input_texts[1:]
target_texts = target_texts[1:]
num_encoder_tokens = len(input_words)
num_decoder_tokens = len(target_words)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])
# Print
print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)
# Create dict for words
input_token_index = dict(
[(word, i) for i, word in enumerate(input_words)])
target_token_index = dict(
[(word, i) for i, word in enumerate(target_words)])
# Get input of encoder and decoder by one-hot vector initializer
encoder_input_data = np.zeros(
(len(input_texts), max_encoder_seq_length, num_encoder_tokens),
dtype='float32')
decoder_input_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
# Get target of decoder by one-hot vector
decoder_target_data = np.zeros(
(len(input_texts), max_decoder_seq_length, num_decoder_tokens),
dtype='float32')
'''
Create one-hot format of the data for training
'''
for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
for t, word in enumerate(input_text):
encoder_input_data[i, t, input_token_index[word]] = 1.
for t, word in enumerate(target_text):
# decoder_target_data is ahead of decoder_input_data by one timestep
decoder_input_data[i, t, target_token_index[word]] = 1.
if t > 0:
# decoder_target_data will be ahead by one timestep
# and will not include the start character.
decoder_target_data[i, t - 1, target_token_index[word]] = 1.
# Encoder
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Decoder
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
# Plot the model
plot_model(model, to_file='keras_model-word.png', show_shapes=True)
model.fit([encoder_input_data, decoder_input_data], decoder_target_data,
batch_size=batch_size,
epochs=epochs,
validation_split=0.2)
# After finish training, save the model
model.save('s2s_10000_50.h5')
# # Load the model
# model.load_weights('s2s_10000_50.h5')
'''
Inference setup
'''
# Define sampling models
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
# Reverse-lookup token index to decode sequences back to readable sequence
reverse_input_word_index = dict((i, word) for word, i in input_token_index.items())
reverse_target_word_index = dict((i, word) for word, i in target_token_index.items())
'''
Inference loop:
1) Encode the input sentence and retrieve the initial decoder state
2) Run one step of the decoder with this initial state and a "start of sequence" token as target.
The output will be the next target word.
3) Append the target word predicted and repeat.
'''
def decode_sequence(input_seq):
# Encode the input as state vectors.
states_value = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start word.
target_seq[0, 0, target_token_index['startofasentence']] = 1.
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = []
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
sampled_word = reverse_target_word_index[sampled_token_index]
decoded_sentence += [sampled_word]
# Exit condition: either hit max length
# or find stop character.
if (sampled_word == 'endofasentence' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c]
return decoded_sentence
# Test the model: give input sentence, get output
for seq_index in range(10):
# Take one sequence (part of the training test)
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('#')
print('Input sentence:', ' '.join(input_texts[seq_index]))
print('Decoded sentence:', ' '.join(decoded_sentence[:-1]))