Skip to content

Latest commit

 

History

History
 
 

vgae

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Variational Graph Auto-Encoders

Requirements

  • Pytorch
  • Python 3.x
  • DGL 0.6
  • scikit-learn

Run the demo

Run with following (available dataset: "cora", "citeseer", "pubmed")

python train.py

Dataset

In this example, I use two kinds of data source. One from DGL's bulit-in dataset (CoraGraphDataset, CiteseerGraphDataset and PubmedGraphDataset), another from website https://github.com/kimiyoung/planetoid.

You can specify a dataset as follows:

python train.py --datasrc dgl --dataset cora  // from DGL
python train.py --datasrc website --dataset cora  // from website

Note: If you want to train by dataset from website, you should download folder https://github.com/kimiyoung/planetoid/tree/master/data. Then put it under project folder.

Results

Use area under the ROC curve (AUC) and average precision (AP) scores for each model on the test set. Numbers show mean results and standard error for 10 runs with random initializations on fixed dataset splits.

Dataset from DGL

Dataset AUC AP
Cora 91.8$\pm$ 0.01 92.5$\pm$0.01
Citeseer 89.2$\pm$0.02 90.8$\pm$0.01
Pubmed 94.5$\pm$0.01 94.6$\pm$0.01

Dataset from website

Dataset AUC AP
Cora 90.9$\pm$ 0.01 92.1$\pm$0.01
Citeseer 90.3$\pm$0.01 91.8$\pm$0.01
Pubmed 94.4$\pm$ 0.01 94.6$\pm$ 0.01

Reported results in paper

Dataset AUC AP
Cora 91.4$\pm$ 0.01 92.6$\pm$0.01
Citeseer 90.8$\pm$0.02 92.0$\pm$0.02
Pubmed 94.4$\pm$0.02 94.7$\pm$0.02