There are different SSIM metrics used in popular CNN-based super resolution algorithms, such as EDSR, RDN and MSRN. In this project, we re-implement those metrics, from MATLAB to Python.
- Please refer to the PSNR setting proposed in EDSR. Then, one may edit
utility.py
as follow:
'''
def calc_psnr(sr, hr, scale, rgb_range, dataset=None):
if hr.nelement() == 1: return 0
diff = (sr - hr) / rgb_range
if dataset and dataset.dataset.benchmark:
shave = scale
if diff.size(1) > 1:
gray_coeffs = [65.738, 129.057, 25.064]
convert = diff.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
diff = diff.mul(convert).sum(dim=1)
else:
shave = scale + 6
valid = diff[..., shave:-shave, shave:-shave]
mse = valid.pow(2).mean()
return -10 * math.log10(mse)
'''
import numpy as np
from scipy import signal
from skimage.measure import compare_ssim
def matlab_style_gauss2D(shape=(3,3),sigma=0.5):
"""
2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma])
Acknowledgement : https://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python (Author@ali_m)
"""
m,n = [(ss-1.)/2. for ss in shape]
y,x = np.ogrid[-m:m+1,-n:n+1]
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def calc_ssim(X, Y, scale, rgb_range, dataset=None, sigma=1.5, K1=0.01, K2=0.03, R=255):
'''
X : y channel (i.e., luminance) of transformed YCbCr space of X
Y : y channel (i.e., luminance) of transformed YCbCr space of Y
Please follow the setting of psnr_ssim.m in EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution CVPRW2017).
Official Link : https://github.com/LimBee/NTIRE2017/tree/db34606c2844e89317aac8728a2de562ef1f8aba
The authors of EDSR use MATLAB's ssim as the evaluation tool,
thus this function is the same as ssim.m in MATLAB with C(3) == C(2)/2.
'''
gaussian_filter = matlab_style_gauss2D((11, 11), sigma)
if dataset and dataset.dataset.benchmark:
shave = scale
if X.size(1) > 1:
gray_coeffs = [65.738, 129.057, 25.064]
convert = X.new_tensor(gray_coeffs).view(1, 3, 1, 1) / 256
X = X.mul(convert).sum(dim=1)
Y = Y.mul(convert).sum(dim=1)
else:
shave = scale + 6
X = X[..., shave:-shave, shave:-shave].squeeze().cpu().numpy().astype(np.float64)
Y = Y[..., shave:-shave, shave:-shave].squeeze().cpu().numpy().astype(np.float64)
window = gaussian_filter
ux = signal.convolve2d(X, window, mode='same', boundary='symm')
uy = signal.convolve2d(Y, window, mode='same', boundary='symm')
uxx = signal.convolve2d(X*X, window, mode='same', boundary='symm')
uyy = signal.convolve2d(Y*Y, window, mode='same', boundary='symm')
uxy = signal.convolve2d(X*Y, window, mode='same', boundary='symm')
vx = uxx - ux * ux
vy = uyy - uy * uy
vxy = uxy - ux * uy
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
mssim = S.mean()
return mssim
- Edit Line 93 in
trainer.py
as follow:
'''
self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr(
sr, hr, scale, self.args.rgb_range, dataset=d
)
'''
self.ckp.log[-1, idx_data, idx_scale] += utility.calc_ssim(
sr, hr, scale, self.args.rgb_range, dataset=d
)
- Edit Line 105 in
trainer.py
as follow:
# '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
'[{} x{}]\SSIM: {:.3f} (Best: {:.3f} @epoch {})'.format(
Different SSIM metrics used in Super-Resolution papers:
import numpy as np
from scipy import signal
from skimage.measure import compare_ssim
def matlab_style_gauss2D(shape=(3,3),sigma=0.5):
"""
2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma])
Acknowledgement : https://stackoverflow.com/questions/17190649/how-to-obtain-a-gaussian-filter-in-python (Author@ali_m)
"""
m,n = [(ss-1.)/2. for ss in shape]
y,x = np.ogrid[-m:m+1,-n:n+1]
h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
sumh = h.sum()
if sumh != 0:
h /= sumh
return h
def calc_ssim(X, Y, sigma=1.5, K1=0.01, K2=0.03, R = 255):
'''
X : y channel (i.e., luminance) of transformed YCbCr space of X
Y : y channel (i.e., luminance) of transformed YCbCr space of Y
Please follow the setting of Evaluate_PSNR_SSIM.m in RDN (Residual Dense Network for Image Super-Resolution CVPR2018).
Official Link : https://github.com/yulunzhang/RDN
'''
gaussian_filter = matlab_style_gauss2D((11, 11), sigma)
X = X.astype(np.float64)
Y = Y.astype(np.float64)
# Since matlab_style_gauss2D() yields normalized filter, this operation can be deprecated.
window = gaussian_filter / np.sum(np.sum(gaussian_filter))
window = np.fliplr(window)
window = np.flipud(window)
ux = signal.convolve2d(X, window, mode='valid', boundary='fill', fillvalue=0)
uy = signal.convolve2d(Y, window, mode='valid', boundary='fill', fillvalue=0)
uxx = signal.convolve2d(X*X, window, mode='valid', boundary='fill', fillvalue=0)
uyy = signal.convolve2d(Y*Y, window, mode='valid', boundary='fill', fillvalue=0)
uxy = signal.convolve2d(X*Y, window, mode='valid', boundary='fill', fillvalue=0)
vx = uxx - ux * ux
vy = uyy - uy * uy
vxy = uxy - ux * uy
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
mssim = S.mean()
return mssim
def calc_ssim(X, Y, sigma=1.5, K1=0.01, K2=0.03, R=255):
'''
X : y channel (i.e., luminance) of transformed YCbCr space of X
Y : y channel (i.e., luminance) of transformed YCbCr space of Y
Please follow the setting of psnr_ssim.m in EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution CVPRW2017).
Official Link : https://github.com/LimBee/NTIRE2017/tree/db34606c2844e89317aac8728a2de562ef1f8aba
The authors of EDSR use MATLAB's ssim as the evaluation tool,
thus this function is the same as ssim.m in MATLAB with C(3) == C(2)/2.
'''
gaussian_filter = matlab_style_gauss2D((11, 11), sigma)
X = X.astype(np.float64)
Y = Y.astype(np.float64)
window = gaussian_filter
ux = signal.convolve2d(X, window, mode='same', boundary='symm')
uy = signal.convolve2d(Y, window, mode='same', boundary='symm')
uxx = signal.convolve2d(X*X, window, mode='same', boundary='symm')
uyy = signal.convolve2d(Y*Y, window, mode='same', boundary='symm')
uxy = signal.convolve2d(X*Y, window, mode='same', boundary='symm')
vx = uxx - ux * ux
vy = uyy - uy * uy
vxy = uxy - ux * uy
C1 = (K1 * R) ** 2
C2 = (K2 * R) ** 2
A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2))
D = B1 * B2
S = (A1 * A2) / D
mssim = S.mean()
return mssim
def calc_ssim(X, Y):
'''
X (groundtruth): y channel (i.e., luminance) of transformed YCbCr space of X
Y (prediction): y channel (i.e., luminance) of transformed YCbCr space of Y
Please follow the setting of test.py in MSRN (Multi-scale Residual Network for Image Super-Resolution ECCV2018).
Official Link : https://github.com/MIVRC/MSRN-PyTorch
The authors of MSRN use scikit-image's compare_ssim as the evaluation tool,
note that this function is quite sensitive to the argument "data_range", emprically, the larger the higher output.
'''
ssim = compare_ssim(X, Y, data_range=max(Y.max(),X.max()) - min(X.min(),Y.min()) # one may obtain a slightly higher output than original setting
# ssim = compare_ssim(X, Y, data_range=Y.max() - X.min())
return ssim
Note that we omit the crop preprocess, which can be a game changer for super resolution problems. Please follow the exact crop setting in those papers before calling SSIM functions.
We are not responsible for better or worse performances than original results reported in those papers. Hopefully, you may find these codes helpful in your research or work.