-
Notifications
You must be signed in to change notification settings - Fork 423
/
MaximumSumCircularSubarray.py
97 lines (67 loc) · 2.92 KB
/
MaximumSumCircularSubarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)
Also, a subarray may only include each element of the fixed buffer A at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
给一个前后连通的数组,求里面和最大的子数组。
不连通的之前已经做过了,每个点的状态有两个,一个是加上之前的 > 0,一个是加上之前的小于 0,此点保存的值为 加上与不加较大的一个。
连通的话呢...一开始致力于用O(n)就找出可以开始的点...走了些弯路:
1. 尝试从 0 开始找第一个非负,没有覆盖全部情况。比如这样 8 -1 -3 8 -5 -5 -5 8.
2. 尝试把点设在从后向前的负数的前面的最大正数。 比如 8 -1 -3 8 -5 -5 -5 8,就选 8 -1 -3 8 -5 -5 -5,这样可以过90%.. 出错的情况忘了记录。
3. 看样子只能 o(n²)。
结束后看 Discuss 里的讨论,大神就是大神... 首尾相连的情况其实就是 sum(A) - sum(min A[subarray])。
ok... 掌握这条信息后直接就可以做出来了,找最小的情况与最大也没什么区别。
284ms
测试地址:
https://leetcode.com/contest/weekly-contest-105/problems/maximum-sum-circular-subarray/
"""
class Solution(object):
def maxSubarraySumCircular(self, A):
"""
:type A: List[int]
:rtype: int
"""
dp = [A[0]]
maxes = A[0]
for i in range(1, len(A)):
if A[i] + dp[i-1] > 0:
maxes = max(maxes, A[i]+dp[i-1], A[i])
dp.append(max(A[i]+dp[i-1], A[i]))
else:
dp.append(A[i])
maxes = max(maxes, A[i])
if maxes < 0:
return maxes
dp = [A[0]]
mines = A[0]
for i in range(1, len(A)):
if A[i] + dp[-1] < 0:
mines = min(mines, A[i]+dp[-1], A[i])
dp.append(min(A[i]+dp[-1], A[i]))
else:
dp.append(A[i])
mines = min(mines, A[i])
maxes = max(maxes, sum(A) - mines)
return maxes