-
Notifications
You must be signed in to change notification settings - Fork 0
/
Results.cs
84 lines (74 loc) · 2.81 KB
/
Results.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
//
// Results.cs
//
// Author:
// Tom Diethe <tom.diethe@bristol.ac.uk>
//
// Copyright (c) 2016 University of Bristol
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
namespace BayesianDictionaryLearning
{
using System;
using System.Collections.Generic;
/// <summary>
/// Results of experiments with different numbers of bases
/// </summary>
public class Results : Serializable<Results>
{
public bool Normalised { get; set; }
/// <summary>
/// Gets or sets the basis counts
/// </summary>
public IList<int> BasisCounts { get; set; } = new List<int>();
/// <summary>
/// Gets or sets the errors.
/// </summary>
public IList<double> Errors { get; set; } = new List<double>();
/// <summary>
/// Gets or sets the sparsity level (on the training data).
/// </summary>
public IList<double> Sparsity { get; set; } = new List<double>();
/// <summary>
/// Gets or sets the evidence.
/// </summary>
public IList<double> Evidence { get; set; } = new List<double>();
/// <summary>
/// Create the results object
/// </summary>
public Results()
{
}
/// <summary>
/// Create the results object
/// </summary>
/// <param name="basisCounts">The basis counts.</param>
public Results(int[] basisCounts)
{
if (basisCounts == null || basisCounts.Length == 0)
{
throw new ArgumentOutOfRangeException(nameof(basisCounts));
}
BasisCounts = basisCounts;
Errors = new double[basisCounts.Length];
Evidence = new double[basisCounts.Length];
Sparsity = new double[basisCounts.Length];
}
}
}