
Using Cortex Open Source to build the Crowd Pipeline for Happy Feet Two

Carsten Kolve Rogier Fransen Moe El Ali Daniele Niero Dan Bethell
Dr. D Studios

Figure 1: Maya crowd shape, Houdini procedural geometry, 3delight render –
all utilising identical Cortex driven backend functionality ©Dr.D Studios Pty
Ltd. All rights reserved.

Abstract

For Happy Feet Two a team of 3 developers built a crowd pipeline
able to produce a variety of crowd effects for over 620 shots with a
7 month main production period and a team of average 16 artists.
The crowd workflow interfaced with nearly all production
departments, from previs all the way to lighting, and worked across
multiple platforms.

The main focus of this sketch is not crowd generation; techniques
for this have been covered in numerous previous works - instead it
is a case study of using the open source software library Cortex1 as
a base foundation for rapid development of custom software
solutions, like a crowd system, in a VFX / feature animation
context.

1 Choosing Cortex
After having completed crowd workflow specifications it became
apparent that implementing all required features within the given 8
month timeframe was not possible given the available manpower.
After evaluating the open source library Cortex for its suitability as
a foundation of the crowd system, we anticipated being able to
reduce the development time by over 30% compared to
implementing a complete custom in-house solution. This allowed
us not only to stay within our resource allocation but also profit
from extra functionality not budgeted for.

2 Using Cortex
Dr. D’s crowd system was based on the concept of mass instancing
pre-recorded skeletal animation, typically acquired by motion
capturing. For 95% of all shots no simulation techniques at all were
used – instead we relied on artists to manually and procedurally
place crowd characters in a shot. The resulting layouts were then
passed to other departments for further processing. Based on these
layouts crowd character components were assembled on demand.

Cortex formed the back-end for all crowd related data and
operations. Following a breakdown of the main components of Dr.
D’s crowd pipeline and how they utilised Cortex.

Core Data Types and Operations

Character and terrain meshes are exported from Maya and stored
using Cortex' MeshPrimitive type. For animation data we store
arrays of matrices to describe skeletal poses. An important
addition to the already existing primitive types in Cortex is a
skeleton representation: Cortex' serializable CompoundObject
classes, which are similar to runtime assembled C structs, allowed
us to prototype a suitable structure in Python, before implementing
it as a SkeletonPrimitive in C++.

Together with Image Engine VFX, the initial developers and main
contributors to Cortex, data types and operations were put in place
to handle bind-information for smooth skinning type deformations.

1 http://code.google.com/p/cortex-vfx/

With these small additions to Cortex all elements were in place to
animate a skeleton and deform a geometry bound to it procedurally.

Data Management

Our data needed to be organised in ways that make it easy and
efficient to access and store: Animation data is stored in a
hierarchical structure that allows for fast sequential as well as
random access of multiple animation poses. The implementation is
based on the FileIndexedIO interface provided by Cortex. For
faster repeated access, mainly utilised during interactive playback,
we used the existing LRU caching module. This enabled us to
access minutes of unique animation data for hundreds of characters
at interactive rates.

All character related components were stored in custom
CompoundObjects optimised for convenient access. These
structures were built using small Python scripts that analysed asset
structures prior to conversion. Layout information which
references animations, character and terrains was also stored in a
similar structure and accessed through a custom function-set
allowing higher level operations such as merging of layouts.

Manual and Procedural Crowd Layouts

While in Maya, crowd layout data was passed through Cortex
Python scripted operator nodes that procedurally modify the data,
enabling operations like clumping, terrain adaption or collision
resolving. A custom Maya shape where each component
represented a single character visualised through articulated cut-up
geometry was used for manual layout. For speed reasons a
specialised OpenGl display solution was preferred to. the Cortex
generic Gl rendering module.

Crowds that required a more procedural approach, like flocks and
swarms, were created in Houdini. These setups utilized the same
ops in use on the Maya side, but this time interfacing with native
Houdini technology. Op scripts were always the same, no matter
the platform, allowing for quick reuse in multiple contexts – even
in standalone Python.

Rendering & FX

For HF2 all lighting and fx were done in Houdini, all rendering in
3delight. For crowd rendering two Cortex Python scripted delayed
Renderman procedurals were used: The first one determined
character bounding boxes and injected sub-procedurals responsible
for generating the final character data at a given lod at rendertime.

The same operations generating character geometry during
rendering were also used to generate temporary geometry at
runtime in Houdini, used by the fx department to generate
secondary effects like foot steps and snow kicks. Integration of
Cortex in Houdini was co-developed with Image Engine.

3 Conclusion
Even though the initially anticipated functionality of Dr. D's crowd
system differed in many aspects from the final toolset, Cortex has
proven to be a flexible base for general VFX software development
and a main contributing factor for delivering the pipeline in time.

Due to its modular structure, a broad set of existing features and
the fact that most of its functionality is readily available in Python
we believe it is well suited for rapid prototyping. Extending Cortex
directly did require a longer familiarisation period, but using both
the Python or C++ libraries was straightforward.

Participating in the open source project development and
committing code back has enabled us to receive feedback and bug
fixes from the community, foster good coding practices and hence
develop higher quality code faster. Confronted with other R&D
tasks in the future, we would not hesitate utilising Cortex again.

	Abstract
	1 Choosing Cortex
	2 Using Cortex
	Core Data Types and Operations
	Data Management
	Manual and Procedural Crowd Layouts
	Rendering & FX

	3 Conclusion

