-
Notifications
You must be signed in to change notification settings - Fork 43
/
quantile.m
234 lines (209 loc) · 8.73 KB
/
quantile.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
function [q,N] = quantile(X,p,dim,method,weights)
%QUANTILE Quantiles of a sample via various methods.
%
% Q = IOSR.STATISTICS.QUANTILE(X,P) returns quantiles of the values in X.
% P is a scalar or a vector of cumulative probability values. When X is
% a vector, Q is the same size as P, and Q(i) contains the P(i)-th
% quantile. When X is a matrix, the i-th row of Q contains the P(i)-th
% quantiles of each column of X. For N-D arrays,
% IOSR.STATISTICS.QUANTILE operates along the first non-singleton
% dimension.
%
% Q = IOSR.STATISTICS.QUANTILE(X,P,DIM) calculates quantiles along
% dimension DIM. The DIM'th dimension of Q has length LENGTH(P).
%
% Q = IOSR.STATISTICS.QUANTILE(X,P,DIM,METHOD) calculates quantiles using
% one of the methods described in http://en.wikipedia.org/wiki/Quantile.
% The method are designated 'R-1'...'R-9'; the default is R-8 as
% described in http://bit.ly/1kX4NcT, whereas Matlab uses 'R-5'.
%
% Q = IOSR.STATISTICS.QUANTILE(X,P,[],METHOD) uses the specified METHOD,
% but calculates quantiles along the first non-singleton dimension.
%
% Q = IOSR.STATISTICS.QUANTILE(X,P,[],METHOD,WEIGHTS) and
% IOSR.STATISTICS.QUANTILE(X,P,[],[],WEIGHTS) uses the array WEIGHTS to
% weight the values in X when calculating quantiles. If no weighting is
% specified, the method determines the real-valued index in to the data
% that is used to calculate the P(i)-th quantile. When a weighting array
% WEIGHTS is specified (WEIGHTS should be the same size as X), this index
% is mapped to the cumulative weights (the weights are scaled to sum to
% N(i) - see below), and a new weighted index is returned (using linear
% interpolation) for the point where the cumulative weights equal the
% unweighted index. The weighted index is used to calculate the P(i)-th
% quantile. If the values in WEIGHTS are equal, then the weighted and
% unweighted index (and correpsonding quantile) are identical. The
% default method R-8 is used if METHOD is specified as an empty array
% ([]).
%
% [Q,N] = IOSR.STATISTICS.QUANTILE(...) returns an array that is the same
% size as Q such that N(i) is the number of points used to calculate
% Q(i).
%
% Further reading
%
% Hyndman, R.J.; Fan, Y. (November 1996). "Sample Quantiles in
% Statistical Packages". The American Statistician 50 (4): 361-365.
% Frigge, Michael; Hoaglin, David C.; Iglewicz, Boris (February 1989).
% "Some Implementations of the Boxplot". The American Statistician 43
% (1): 50-54.
%
% See also QUANTILE.
% Copyright 2016 University of Surrey.
%% Check input and make default assignments
assert(isnumeric(X), 'iosr:quantile:invalidX', 'X must be a numeric');
assert(isvector(p) & isnumeric(p), 'iosr:quantile:invalidP', 'P must be a numeric vector');
assert(all(p>=0 & p<=1), 'iosr:quantile:invalidP', 'Values in P must be in the interval [0,1].')
if nargin<2
error('iosr:quantile:tooFewInputArgs','Not enough input arguments.')
end
dims = size(X);
if nargin<3 || isempty(dim)
dim = find(dims>1,1,'first'); % default dim
else % validate input
assert(isnumeric(dim) | isempty(dim), 'iosr:quantile:invalidDim', 'DIM must be an integer or empty');
assert(isint(dim) | isempty(dim), 'iosr:quantile:invalidDim', 'DIM must be an integer or empty');
assert(dim>0, 'iosr:quantile:invalidDim', 'DIM must be greater than 0')
end
if nargin<4
method = 'r-8'; % default method
else % validate input
if isempty(method)
method = 'r-8'; % default method
else
assert(ischar(method), 'iosr:quantile:invalidMethod', 'METHOD must be a character array')
end
end
if nargin<5
weights = [];
else
assert(isequal(size(X),size(weights)) || isempty(weights), 'iosr:quantile:invalidWeights', 'WEIGHTS must be the same size as X');
end
%% choose method
% See http://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population
switch lower(method)
case 'r-1'
min_con = @(N,p)(p==0);
max_con = @(N,p)(false);
h = @(N,p)((N*p)+.5);
Qp = @(x,h)(x(ceil(h-.5)));
case 'r-2'
min_con = @(N,p)(p==0);
max_con = @(N,p)(p==1);
h = @(N,p)((N*p)+.5);
Qp = @(x,h)((x(ceil(h-.5))+x(floor(h+.5)))/2);
case 'r-3'
min_con = @(N,p)(p<=(.5/N));
max_con = @(N,p)(false);
h = @(N,p)(N*p);
Qp = @(x,h)(x(round(h)));
case 'r-4'
min_con = @(N,p)(p<(1/N));
max_con = @(N,p)(p==1);
h = @(N,p)(N*p);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-5'
min_con = @(N,p)(p<(.5/N));
max_con = @(N,p)(p>=((N-.5)/N));
h = @(N,p)((N*p)+.5);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-6'
min_con = @(N,p)(p<(1/(N+1)));
max_con = @(N,p)(p>=(N/(N+1)));
h = @(N,p)((N+1)*p);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-7'
min_con = @(N,p)(false);
max_con = @(N,p)(p==1);
h = @(N,p)(((N-1)*p)+1);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-8'
min_con = @(N,p)(p<((2/3)/(N+(1/3))));
max_con = @(N,p)(p>=((N-(1/3))/(N+(1/3))));
h = @(N,p)(((N+(1/3))*p)+(1/3));
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-9'
min_con = @(N,p)(p<((5/8)/(N+.25)));
max_con = @(N,p)(p>=((N-(3/8))/(N+.25)));
h = @(N,p)(((N+.25)*p)+(3/8));
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
otherwise
error('iosr:quantile:unknownMethod',['Method ''' method ''' does not exist'])
end
%% calculate quartiles
% reshape data so function works down columns
order = mod(dim-1:dim+length(dims)-2,length(dims))+1;
dims_shift = dims(order);
x = rearrange(X,order,[dims_shift(1) prod(dims_shift(2:end))]);
if ~isempty(weights)
weights = rearrange(weights,order,[dims_shift(1) prod(dims_shift(2:end))]);
cumwfunc = @accumulateWeights;
wfunc = @weightedIndex;
else
cumwfunc = @(~,~,~,N) 1:N;
wfunc = @(x,~) x;
end
% pre-allocate q
q = zeros([length(p) prod(dims_shift(2:end))]);
N = zeros([length(p) prod(dims_shift(2:end))]);
for m = 1:length(p)
for n = 1:numel(q)/length(p)
[xSorted,ind] = sort(x(~isnan(x(:,n)),n)); % sort
N(m,n) = length(xSorted); % sample size
k = cumwfunc(weights,ind,n,N(m,n));
switch N(m,n)
case 0
q(m,n) = NaN;
case 1
q(m,n) = xSorted;
otherwise
if min_con(N(m,n),p(m)) % at lower limit
q(m,n) = xSorted(1);
elseif max_con(N(m,n),p(m)) % at upper limit
q(m,n) = xSorted(N(m,n));
else % everything else
huw = h(N(m,n),p(m)); % unweighted index
hw = wfunc(huw,k);
q(m,n) = Qp(xSorted,hw);
end
end
end
end
% restore dims of q to equate to those of input
q = irearrange(q,order,[length(p) dims_shift(2:end)]);
N = irearrange(N,order,[length(p) dims_shift(2:end)]);
% if q is a vector, make same shape as p
if numel(p)==numel(q)
q=reshape(q,size(p));
N=reshape(N,size(p));
end
end
function cumweights = accumulateWeights(weights,ind,n,N)
%ACCUMULATEWEIGHTS accumulate the weights
wSorted = weights(ind,n); % sort weights
wSorted = wSorted*N/sum(wSorted); % normalize weights to sum to N
cumweights = cumsum(wSorted); % cumulative weights
end
function hw = weightedIndex(huw, cumweights)
%WEIGHTEDINDEX calculate index from cumulative weights
ii = find(sign(cumweights-huw)<0,1,'last');
jj = find(sign(cumweights-huw)>0,1,'first');
if isempty(ii) || isempty(jj)
hw = huw;
else
hw = ii + (huw-cumweights(ii))/(cumweights(jj)-cumweights(ii)); % weighted index
end
end
function y = isint(x)
%ISINT check if input is whole number
y = x==round(x);
end
function y = rearrange(x,order,shape)
%REARRANGE reshape and permute to make target dim column
y = permute(x,order);
y = reshape(y,shape);
end
function y = irearrange(x,order,shape)
%IREARRANGE reshape and permute to original size
y = reshape(x,shape);
y = ipermute(y,order);
end