-
Notifications
You must be signed in to change notification settings - Fork 12
/
simulacra_imagen_sample.py
219 lines (188 loc) · 6.81 KB
/
simulacra_imagen_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse, os, sys, glob
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def main(opt):
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=256,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=256,
help="image width, in pixel space",
)
parser.add_argument(
"--n_samples",
type=int,
default=8,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=5.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--dyn",
type=float,
help="dynamic thresholding from Imagen, in latent space (TODO: try in pixel space with intermediate decode)",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="logs/f8-kl-clip-encoder-256x256-run1/configs/2022-06-01T22-11-40-project.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt",
help="path to checkpoint of model",
)
#opt = parser.parse_args()
opt.n_rows = 1
opt.config = "stable-diffusion/configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512-inference.yaml"
opt.ckpt = "256f8ft512-2022-06-15-pruned.ckpt"
opt.dyn = None
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
with torch.no_grad():
with model.ema_scope():
for n in trange(opt.n_iter, desc="Sampling"):
all_samples = list()
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [4, opt.H//8, opt.W//8]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
dynamic_threshold=opt.dyn)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
all_samples.append(x_samples_ddim)
# print(all_samples)
# outs = torch.stack(all_samples)
# print(outs.shape)
outs = all_samples[0]
for index, out in enumerate(outs):
print(out.shape)
outpath = str(opt.seed) + "_" + opt.prompt.replace(" ", "_").replace("/","_") + "_" + str(index + 1) + ".png"
out = 255. * rearrange(out.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(out.astype(np.uint8)).save(outpath)
gridpath = str(opt.seed) + "_" + opt.prompt.replace(" ", "_").replace("/","_") + "_grid" + ".png"
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=opt.n_samples)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(gridpath)
if __name__ == "__main__":
pass