Azure Key Vault is a service that allows you to encrypt authentication keys, storage account keys, data encryption keys, .pfx files, and passwords by using keys that are protected by hardware security modules (HSMs). If you would like to know more about Azure Key Vault, you may want to review "What is Azure Key Vault?".
Azure Key Vault Key management allows you to create and control encryption keys that encrypt your data.
Use the client library for Azure Key Vault Keys in your Node.js application to
- Create keys (using eliptic curve or RSA encryption, optionally backed by an HSM).
- Import keys.
- Delete keys.
- Update keys.
- Get one or more keys.
- Get one or more deleted keys.
- Recover a deleted key.
- Restore a backed up key.
- Get the versions of a key.
- As well as obtaining the attributes of a key.
Using the cryptography client available in this library you also have access to
- Encrypting
- Decrypting
- Signing
- Verifying
- Wrapping keys
- Unwrapping keys
Please Note: This is a preview version of the Key Vault Keys library
Source code | Package (npm) | API Reference Documentation | Product documentation | Samples
Prerequisites: You must have an Azure subscription and a Key Vault resource to use this package. If you are using this package in a Node.js application, then use Node.js 6.x or higher.
To quickly create the needed Key Vault resources in Azure and to receive a connection string for them, you can deploy our sample template by clicking:
Install the Azure Key Vault Keys client library using npm
npm install @azure/keyvault-keys
Key Vault clients authenticate using the Azure identity library. Install it as well using npm
npm install @azure/identity
TypeScript users need to have Node type definitions installed:
npm install @types/node
You also need to enable compilerOptions.allowSyntheticDefaultImports
in your tsconfig.json. Note that if you have enabled compilerOptions.esModuleInterop
, allowSyntheticDefaultImports
is enabled by default. See TypeScript's compiler options handbook for more information.
Use the Azure Cloud Shell snippet below to create/get client secret credentials.
-
Create a service principal and configure its access to Azure resources:
az ad sp create-for-rbac -n <your-application-name> --skip-assignment
Output:
{ "appId": "generated-app-ID", "displayName": "dummy-app-name", "name": "http://dummy-app-name", "password": "random-password", "tenant": "tenant-ID" }
-
Use the above returned credentials information to set AZURE_CLIENT_ID(appId), AZURE_CLIENT_SECRET(password) and AZURE_TENANT_ID(tenant) environment variables. The following example shows a way to do this in Bash:
export AZURE_CLIENT_ID="generated-app-ID" export AZURE_CLIENT_SECRET="random-password" export AZURE_TENANT_ID="tenant-ID"
-
Grant the above mentioned application authorization to perform key operations on the keyvault:
az keyvault set-policy --name <your-key-vault-name> --spn $AZURE_CLIENT_ID --key-permissions backup create decrypt delete encrypt get import list purge recover restore sign unwrapKey update verify wrapKey
--secret-permissions: Accepted values: backup, create, decrypt, delete, encrypt, get, import, list, purge, recover, restore, sign, unwrapKey, update, verify, wrapKey
-
Use the above mentioned Key Vault name to retrieve details of your Vault which also contains your Key Vault URL:
az keyvault show --name <your-key-vault-name>
- The Keys client is the primary interface to interact with the API methods related to keys in the Azure Key Vault API from a JavaScript application. Once initialized, it provides a basic set of methods that can be used to create, read, update and delete keys.
- A Key version is a version of a key in the Key Vault. Each time a user assigns a value to a unique key name, a new version of that key is created. Retrieving a key by a name will always return the latest value assigned, unless a specific version is provided to the query.
- Soft delete allows Key Vaults to support deletion and purging as two separate steps, so deleted keys are not immediately lost. This only happens if the Key Vault has soft-delete enabled.
- A Key backup can be generated from any created key. These backups come as binary data, and can only be used to regenerate a previously deleted key.
- The Cryptography client is a separate interface that interacts with the keys API methods in the Key Vault API. This client focuses only in the cryptography operations that can be executed using a key that has been already created in the Key Vault. More about this client in the Cryptography section.
To use the key vault from TypeScript/JavaScript, you need to first authenticate with the key vault service. To authenticate, first we import the identity and KeyClient, which will connect to the key vault.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
Once these are imported, we can next connect to the key vault service. To do this, we'll need to copy some settings from the key vault we are connecting to into our environment variables. Once they are in our environment, we can access them with the following code:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
// DefaultAzureCredential expects the following three environment variables:
// * AZURE_TENANT_ID: The tenant ID in Azure Active Directory
// * AZURE_CLIENT_ID: The application (client) ID registered in the AAD tenant
// * AZURE_CLIENT_SECRET: The client secret for the registered application
const credential = new DefaultAzureCredential();
// Build the URL to reach your key vault
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
// Lastly, create our keys client and connect to the service
const client = new KeyClient(url, credential);
The following sections provide code snippets that cover some of the common tasks using Azure Key Vault Keys. The scenarios that are covered here consist of:
- Creating a key.
- Getting a key.
- Creating and updating keys with attributes.
- Deleting a key.
- Iterating lists of keys.
createKey
creates a Key to be stored in the Azure Key Vault. If a key with
the same name already exists, then a new version of the key is created.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const result = await client.createKey(keyName, "RSA");
console.log("result: ", result);
}
main();
The second parameter sent to createKey
is the type of the key. Keys can
either be of type: EC
, EC-HSM
, RSA
or RSA-HSM
.
The simplest way to read keys back from the vault is to get a key by name. This will retrieve the most recent version of the key. You can optionally get a different version of the key if you specify it as part of the optional parameters.
getKey
retrieves a key previous stores in the Key Vault.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const latestKey = await client.getKey(keyName);
console.log(`Latest version of the key ${keyName}: `, latestKey);
const specificKey = await client.getKey(keyName, { version: latestKey.version! });
console.log(`The key ${keyName} at the version ${latestKey.version!}: `, specificKey);
}
main();
The following attributes can also be assigned to any key in a Key Vault:
tags
: Any set of key-values that can be used to search and filter keys.keyOps
: An array of the operations that this key will be able to perform (encrypt
,decrypt
,sign
,verify
,wrapKey
,unwrapKey
).enabled
: A boolean value that determines whether the key value can be read or not.notBefore
: A given date after which the key value can be retrieved.expires
: A given date after which the key value cannot be retrieved.
An object with these attributes can be sent as the third parameter of
createKey
, right after the key's name and value, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const result = await client.createKey(keyName, "RSA", {
enabled: false
});
console.log("result: ", result);
}
main();
This will create a new version of the same key, which will have the latest provided attributes.
Attributes can also be updated to an existing key version with
updateKeyProperties
, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const result = await client.createKey(keyName, "RSA");
await client.updateKeyProperties(keyName, result.properties.version, {
enabled: false
});
}
main();
The beginDeleteKey
method starts the deletion of a key.
This process will happen in the background as soon as the necessary resources
are available.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName);
await poller.pollUntilDone();
}
main();
If soft-delete is enabled for the Key Vault, this operation will only label the key as a deleted key. A deleted key can't be updated. They can only be either read, recovered or purged.
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName)
// You can use the deleted key immediately:
const deletedKey = poller.getDeletedKey();
// The key is being deleted. Only wait for it if you want to restore it or purge it.
await poller.pollUntilDone();
// You can also get the deleted key this way:
await client.getDeletedKey(keyName);
// Deleted keys can also be recovered or purged:
// recoverDeletedKey also returns a poller, just like beginDeleteKey.
const recoverPoller = await client.beginRecoverDeletedKey(keyName)
const recoverPoller.pollUntilDone();
// And here is how to purge a deleted key
await client.purgeDeletedKey(keyName);
}
main();
Since Keys take some time to get fully deleted, beginDeleteKey
returns a Poller object that keeps track of the underlying Long Running
Operation according to our guidelines:
https://azure.github.io/azure-sdk/typescript_design.html#ts-lro
The received poller will allow you to get the deleted key by calling to poller.getDeletedKey()
.
You can also wait until the deletion finishes, either by running individual service
calls until the key is deleted, or by waiting until the process is done:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
const poller = await client.beginDeleteKey(keyName);
// You can use the deleted key immediately:
let deletedKey = poller.getDeletedKey();
await poller.poll(); // On each poll, the poller checks whether the key has been deleted or not.
console.log(poller.isDone()) // The poller will be done once the key is fully deleted.
// Alternatively, you can keep polling automatically until the operation finishes with pollUntilDone:
deletedKey = await poller.pollUntilDone();
console.log(deletedKey);
}
main();
Using the KeyClient, you can retrieve and iterate through all of the keys in a Key Vault, as well as through all of the deleted keys and the versions of a specific key. The following API methods are available:
listPropertiesOfKeys
will list all of your non-deleted keys by their names, only at their latest versions.listDeletedKeys
will list all of your deleted keys by their names, only at their latest versions.listPropertiesOfKeyVersions
will list all the versions of a key based on a key name.
Which can be used as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
for await (let keyProperties of client.listPropertiesOfKeys()) {
console.log("Key properties: ", keyProperties);
}
for await (let deletedKey of client.listDeletedKeys()) {
console.log("Deleted: ", deletedKey);
}
for await (let versionProperties of client.listPropertiesOfKeyVersions(keyName)) {
console.log("Version properties: ", versionProperties);
}
}
main();
All of these methods will return all of the available results at once. To
retrieve them by pages, add .byPage()
right after invoking the API method you
want to use, as follows:
const { DefaultAzureCredential } = require("@azure/identity");
const { KeyClient } = require("@azure/keyvault-keys");
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const client = new KeyClient(url, credential);
const keyName = "MyKeyName";
async function main() {
for await (let page of client.listPropertiesOfKeys().byPage()) {
for (let keyProperties of page) {
console.log("Key properties: ", keyProperties);
}
}
for await (let page of client.listDeletedKeys().byPage()) {
for (let deletedKey of page) {
console.log("Deleted key: ", deletedKey);
}
}
for await (let page of client.listPropertiesOfKeyVersions(keyName).byPage()) {
for (let versionProperties of page) {
console.log("Version: ", versionProperties);
}
}
}
This library also offers a set of cryptographic utilities available through
CryptographyClient
. Similar to the KeyClient
, CryptographyClient
will
connect to Azure Key Vault with the provided set of credentials. Once
connected, CryptographyClient
can encrypt, decrypt, sign, verify, wrap keys,
and unwrap keys.
We can next connect to the key vault service just as we do with the KeyClient. We'll need to copy some settings from the key vault we are connecting to into our environment variables. Once they are in our environment, we can access them with the following code:
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
// Create or retrieve a key from the keyvault
let myKey = await keysClient.createKey("MyKey", "RSA");
// Lastly, create our cryptography client and connect to the service
// This example uses the URL that is part of the key we created (called key ID)
const cryptographyClient = new CryptographyClient(myKey.id, credential);
encrypt
will encrypt a message. The following algorithms are currently supported: "RSA-OAEP", "RSA-OAEP-256", and "RSA1_5".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const encryptResult = await cryptographyClient.encrypt("RSA1_5", Buffer.from("My Message"));
console.log("encrypt result: ", encryptResult.result);
}
main();
decrypt
will decrypt an encrypted message. The following algorithms are currently supported: "RSA-OAEP", "RSA-OAEP-256", and "RSA1_5".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const decryptResult = await cryptographyClient.decrypt("RSA1_5", encryptResult.result);
console.log("decrypt result: ", decryptResult.result.toString());
}
main();
sign
will cryptographically sign the digest (hash) of a message with a signature. The following algorithms are currently supported: "PS256", "PS384", "PS512", "RS256", "RS384", "RS512", "ES256","ES256K", "ES384", and "ES512".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const signatureValue = "MySignature";
let hash = crypto.createHash("sha256");
let digest = hash.update(signatureValue).digest();
console.log("digest: ", digest);
const signResult = await cryptographyClient.sign("RS256", digest);
console.log("sign result: ", signResult.result);
}
main();
signData
will cryptographically sign a message with a signature. The following algorithms are currently supported: "PS256", "PS384", "PS512", "RS256", "RS384", "RS512", "ES256","ES256K", "ES384", and "ES512".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const signResult = await cryptographyClient.sign("RS256", Buffer.from("My Message"));
console.log("sign result: ", signResult.result);
}
main();
verify
will cryptographically verify that the signed digest was signed with the given signature. The following algorithms are currently supported: "PS256", "PS384", "PS512", "RS256", "RS384", "RS512", "ES256","ES256K", "ES384", and "ES512".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const signResult = await cryptographyClient.sign("RS256", Buffer.from("My Message"));
console.log("sign result: ", signResult.result);
const verifyResult = await cryptographyClient.verify("RS256", digest, signResult.result);
console.log("verify result: ", verifyResult.result);
}
main();
verifyData
will cryptographically verify that the signed message was signed with the given signature. The following algorithms are currently supported: "PS256", "PS384", "PS512", "RS256", "RS384", "RS512", "ES256","ES256K", "ES384", and "ES512".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const buffer = Buffer.from("My Message");
const signResult = await cryptographyClient.sign("RS256", buffer);
console.log("sign result: ", signResult.result);
const verifyResult = await cryptographyClient.verifyData("RS256", buffer, signResult.result);
console.log("verify result: ", verifyResult.result);
}
main();
wrapKey
will wrap a key with an encryption layer. The following algorithms are currently supported: "RSA-OAEP", "RSA-OAEP-256", and "RSA1_5".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const wrapResult = await cryptographyClient.wrapKey("RSA-OAEP", Buffer.from("My Key"));
console.log("wrap result:", wrapResult.result);
}
main();
unwrapKey
will unwrap a wrapped key. The following algorithms are currently supported: "RSA-OAEP", "RSA-OAEP-256", and "RSA1_5".
import { DefaultAzureCredential } from "@azure/identity";
import { KeyClient, CryptographyClient } from "@azure/keyvault-keys";
const credential = new DefaultAzureCredential();
const vaultName = "<YOUR KEYVAULT NAME>";
const url = `https://${vaultName}.vault.azure.net`;
const keysClient = new KeyClient(url, credential);
async function main() {
let myKey = await keysClient.createKey("MyKey", "RSA");
const cryptographyClient = new CryptographyClient(myKey.id, credential);
const wrapResult = await cryptographyClient.wrapKey("RSA-OAEP", Buffer.from("My Key"));
console.log("wrap result:", wrapResult.result);
const unwrapResult = await cryptographyClient.unwrapKey("RSA-OAEP", wrapResult.result);
console.log("unwrap result: ", unwrapResult.result);
}
main();
You can set the following environment variable to get the debug logs when using this library.
- Getting debug logs from the Key Vault Keys SDK
export DEBUG=azure*
Please take a look at the samples directory for detailed examples on how to use this library.
This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
To run our tests, first install the dependencies (with npm install
or rush install
),
then run the unit tests with: npm run unit-test
.
Our unit tests that target the behavior of our library against remotely
available endpoints are executed using previously recorded HTTP request and
responses.
Our integration tests will run against the live resources, which are determined
by the environment variables you provide. To run the integration tests, you can
run npm run integration-test
, but make sure to provide the following
environment variables:
AZURE_CLIENT_ID
: The Client ID of your Azure account.AZURE_CLIENT_SECRET
: The secret of your Azure account.AZURE_TENANT_ID
: The Tenant ID of your Azure account.KEYVAULT_NAME
: The name of the Key Vault you want to run the tests against.
WARNING: Integration tests will wipe all of the existing records in the targeted Key Vault.