-
Notifications
You must be signed in to change notification settings - Fork 222
/
ex_acm3025.py
293 lines (241 loc) · 11.3 KB
/
ex_acm3025.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import time
import numpy as np
import tensorflow as tf
from models import GAT, HeteGAT, HeteGAT_multi
from utils import process
# 禁用gpu
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2,3"
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
dataset = 'acm'
featype = 'fea'
checkpt_file = 'pre_trained/{}/{}_allMP_multi_{}_.ckpt'.format(dataset, dataset, featype)
print('model: {}'.format(checkpt_file))
# training params
batch_size = 1
nb_epochs = 200
patience = 100
lr = 0.005 # learning rate
l2_coef = 0.001 # weight decay
# numbers of hidden units per each attention head in each layer
hid_units = [8]
n_heads = [8, 1] # additional entry for the output layer
residual = False
nonlinearity = tf.nn.elu
model = HeteGAT_multi
print('Dataset: ' + dataset)
print('----- Opt. hyperparams -----')
print('lr: ' + str(lr))
print('l2_coef: ' + str(l2_coef))
print('----- Archi. hyperparams -----')
print('nb. layers: ' + str(len(hid_units)))
print('nb. units per layer: ' + str(hid_units))
print('nb. attention heads: ' + str(n_heads))
print('residual: ' + str(residual))
print('nonlinearity: ' + str(nonlinearity))
print('model: ' + str(model))
# jhy data
import scipy.io as sio
import scipy.sparse as sp
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def load_data_dblp(path='/home/jhy/allGAT/acm_hetesim/ACM3025.mat'):
data = sio.loadmat(path)
truelabels, truefeatures = data['label'], data['feature'].astype(float)
N = truefeatures.shape[0]
rownetworks = [data['PAP'] - np.eye(N), data['PLP'] - np.eye(N)] # , data['PTP'] - np.eye(N)]
y = truelabels
train_idx = data['train_idx']
val_idx = data['val_idx']
test_idx = data['test_idx']
train_mask = sample_mask(train_idx, y.shape[0])
val_mask = sample_mask(val_idx, y.shape[0])
test_mask = sample_mask(test_idx, y.shape[0])
y_train = np.zeros(y.shape)
y_val = np.zeros(y.shape)
y_test = np.zeros(y.shape)
y_train[train_mask, :] = y[train_mask, :]
y_val[val_mask, :] = y[val_mask, :]
y_test[test_mask, :] = y[test_mask, :]
# return selected_idx, selected_idx_2
print('y_train:{}, y_val:{}, y_test:{}, train_idx:{}, val_idx:{}, test_idx:{}'.format(y_train.shape,
y_val.shape,
y_test.shape,
train_idx.shape,
val_idx.shape,
test_idx.shape))
truefeatures_list = [truefeatures, truefeatures, truefeatures]
return rownetworks, truefeatures_list, y_train, y_val, y_test, train_mask, val_mask, test_mask
# use adj_list as fea_list, have a try~
adj_list, fea_list, y_train, y_val, y_test, train_mask, val_mask, test_mask = load_data_dblp()
if featype == 'adj':
fea_list = adj_list
import scipy.sparse as sp
nb_nodes = fea_list[0].shape[0]
ft_size = fea_list[0].shape[1]
nb_classes = y_train.shape[1]
# adj = adj.todense()
# features = features[np.newaxis] # [1, nb_node, ft_size]
fea_list = [fea[np.newaxis] for fea in fea_list]
adj_list = [adj[np.newaxis] for adj in adj_list]
y_train = y_train[np.newaxis]
y_val = y_val[np.newaxis]
y_test = y_test[np.newaxis]
train_mask = train_mask[np.newaxis]
val_mask = val_mask[np.newaxis]
test_mask = test_mask[np.newaxis]
biases_list = [process.adj_to_bias(adj, [nb_nodes], nhood=1) for adj in adj_list]
print('build graph...')
with tf.Graph().as_default():
with tf.name_scope('input'):
ftr_in_list = [tf.placeholder(dtype=tf.float32,
shape=(batch_size, nb_nodes, ft_size),
name='ftr_in_{}'.format(i))
for i in range(len(fea_list))]
bias_in_list = [tf.placeholder(dtype=tf.float32,
shape=(batch_size, nb_nodes, nb_nodes),
name='bias_in_{}'.format(i))
for i in range(len(biases_list))]
lbl_in = tf.placeholder(dtype=tf.int32, shape=(
batch_size, nb_nodes, nb_classes), name='lbl_in')
msk_in = tf.placeholder(dtype=tf.int32, shape=(batch_size, nb_nodes),
name='msk_in')
attn_drop = tf.placeholder(dtype=tf.float32, shape=(), name='attn_drop')
ffd_drop = tf.placeholder(dtype=tf.float32, shape=(), name='ffd_drop')
is_train = tf.placeholder(dtype=tf.bool, shape=(), name='is_train')
# forward
logits, final_embedding, att_val = model.inference(ftr_in_list, nb_classes, nb_nodes, is_train,
attn_drop, ffd_drop,
bias_mat_list=bias_in_list,
hid_units=hid_units, n_heads=n_heads,
residual=residual, activation=nonlinearity)
# cal masked_loss
log_resh = tf.reshape(logits, [-1, nb_classes])
lab_resh = tf.reshape(lbl_in, [-1, nb_classes])
msk_resh = tf.reshape(msk_in, [-1])
loss = model.masked_softmax_cross_entropy(log_resh, lab_resh, msk_resh)
accuracy = model.masked_accuracy(log_resh, lab_resh, msk_resh)
# optimzie
train_op = model.training(loss, lr, l2_coef)
saver = tf.train.Saver()
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
vlss_mn = np.inf
vacc_mx = 0.0
curr_step = 0
with tf.Session(config=config) as sess:
sess.run(init_op)
train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0
for epoch in range(nb_epochs):
tr_step = 0
tr_size = fea_list[0].shape[0]
# ================ training ============
while tr_step * batch_size < tr_size:
fd1 = {i: d[tr_step * batch_size:(tr_step + 1) * batch_size]
for i, d in zip(ftr_in_list, fea_list)}
fd2 = {i: d[tr_step * batch_size:(tr_step + 1) * batch_size]
for i, d in zip(bias_in_list, biases_list)}
fd3 = {lbl_in: y_train[tr_step * batch_size:(tr_step + 1) * batch_size],
msk_in: train_mask[tr_step * batch_size:(tr_step + 1) * batch_size],
is_train: True,
attn_drop: 0.6,
ffd_drop: 0.6}
fd = fd1
fd.update(fd2)
fd.update(fd3)
_, loss_value_tr, acc_tr, att_val_train = sess.run([train_op, loss, accuracy, att_val],
feed_dict=fd)
train_loss_avg += loss_value_tr
train_acc_avg += acc_tr
tr_step += 1
vl_step = 0
vl_size = fea_list[0].shape[0]
# ============= val =================
while vl_step * batch_size < vl_size:
# fd1 = {ftr_in: features[vl_step * batch_size:(vl_step + 1) * batch_size]}
fd1 = {i: d[vl_step * batch_size:(vl_step + 1) * batch_size]
for i, d in zip(ftr_in_list, fea_list)}
fd2 = {i: d[vl_step * batch_size:(vl_step + 1) * batch_size]
for i, d in zip(bias_in_list, biases_list)}
fd3 = {lbl_in: y_val[vl_step * batch_size:(vl_step + 1) * batch_size],
msk_in: val_mask[vl_step * batch_size:(vl_step + 1) * batch_size],
is_train: False,
attn_drop: 0.0,
ffd_drop: 0.0}
fd = fd1
fd.update(fd2)
fd.update(fd3)
loss_value_vl, acc_vl = sess.run([loss, accuracy],
feed_dict=fd)
val_loss_avg += loss_value_vl
val_acc_avg += acc_vl
vl_step += 1
# import pdb; pdb.set_trace()
print('Epoch: {}, att_val: {}'.format(epoch, np.mean(att_val_train, axis=0)))
print('Training: loss = %.5f, acc = %.5f | Val: loss = %.5f, acc = %.5f' %
(train_loss_avg / tr_step, train_acc_avg / tr_step,
val_loss_avg / vl_step, val_acc_avg / vl_step))
if val_acc_avg / vl_step >= vacc_mx or val_loss_avg / vl_step <= vlss_mn:
if val_acc_avg / vl_step >= vacc_mx and val_loss_avg / vl_step <= vlss_mn:
vacc_early_model = val_acc_avg / vl_step
vlss_early_model = val_loss_avg / vl_step
saver.save(sess, checkpt_file)
vacc_mx = np.max((val_acc_avg / vl_step, vacc_mx))
vlss_mn = np.min((val_loss_avg / vl_step, vlss_mn))
curr_step = 0
else:
curr_step += 1
if curr_step == patience:
print('Early stop! Min loss: ', vlss_mn,
', Max accuracy: ', vacc_mx)
print('Early stop model validation loss: ',
vlss_early_model, ', accuracy: ', vacc_early_model)
break
train_loss_avg = 0
train_acc_avg = 0
val_loss_avg = 0
val_acc_avg = 0
saver.restore(sess, checkpt_file)
print('load model from : {}'.format(checkpt_file))
ts_size = fea_list[0].shape[0]
ts_step = 0
ts_loss = 0.0
ts_acc = 0.0
while ts_step * batch_size < ts_size:
# fd1 = {ftr_in: features[ts_step * batch_size:(ts_step + 1) * batch_size]}
fd1 = {i: d[ts_step * batch_size:(ts_step + 1) * batch_size]
for i, d in zip(ftr_in_list, fea_list)}
fd2 = {i: d[ts_step * batch_size:(ts_step + 1) * batch_size]
for i, d in zip(bias_in_list, biases_list)}
fd3 = {lbl_in: y_test[ts_step * batch_size:(ts_step + 1) * batch_size],
msk_in: test_mask[ts_step * batch_size:(ts_step + 1) * batch_size],
is_train: False,
attn_drop: 0.0,
ffd_drop: 0.0}
fd = fd1
fd.update(fd2)
fd.update(fd3)
loss_value_ts, acc_ts, jhy_final_embedding = sess.run([loss, accuracy, final_embedding],
feed_dict=fd)
ts_loss += loss_value_ts
ts_acc += acc_ts
ts_step += 1
print('Test loss:', ts_loss / ts_step,
'; Test accuracy:', ts_acc / ts_step)
print('start knn, kmean.....')
xx = np.expand_dims(jhy_final_embedding, axis=0)[test_mask]
from numpy import linalg as LA
# xx = xx / LA.norm(xx, axis=1)
yy = y_test[test_mask]
print('xx: {}, yy: {}'.format(xx.shape, yy.shape))
from jhyexps import my_KNN, my_Kmeans#, my_TSNE, my_Linear
my_KNN(xx, yy)
my_Kmeans(xx, yy)
sess.close()