We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The DoubleRegressor example in the this section uses deprecated @from_network macro.
DoubleRegressor
@from_network
Here's an update to that example:
using MLJ using MLJBase # # THE AVERAGER (no changes) mutable struct Averager <: Static mix::Float64 end MLJ.transform(a::Averager, _, y1, y2) = (1 - a.mix)*y1 + a.mix*y2 # # THE COMPOSITE MODEL mutable struct DoubleRegressor <: DeterministicNetworkComposite regressor1 regressor2 averager end function MLJBase.prefit(composite::DoubleRegressor, verbosity, X, y) Xs = source(X) ys = source(y) averager = Averager(0.5) mach0 = machine(OneHotEncoder(), Xs) W = transform(mach0, Xs) # one-hot encode the input mach1 = machine(:regressor1, W, ys) y1 = predict(mach1, W) mach2 = machine(:regressor2, W, ys) y2 = predict(mach2, W) mach3 = machine(:averager) yhat = transform(mach3, y1, y2) return (; predict=yhat) end Ridge = @load RidgeRegressor pkg=MultivariateStats KNN = @load KNNRegressor # # DEMONSTRATION composite = DoubleRegressor(Ridge(), KNN(), Averager(0.5)) # DoubleRegressor( # regressor1 = RidgeRegressor( # lambda = 1.0, # bias = true), # regressor2 = KNNRegressor( # K = 5, # algorithm = :kdtree, # metric = Distances.Euclidean(0.0), # leafsize = 10, # reorder = true, # weights = NearestNeighborModels.Uniform()), # averager = Averager( # mix = 0.5)) composite.averager.mix = 0.25 # adjust mix from default of 0.5 evaluate(composite, (@load_reduced_ames)..., measure=rms) # PerformanceEvaluation object with these fields: # model, measure, operation, measurement, per_fold, # per_observation, fitted_params_per_fold, # report_per_fold, train_test_rows, resampling, repeats # Extract: # ┌────────────────────────┬───────────┬─────────────┬─────────┬────────────────────────────────────────────────────────┐ # │ measure │ operation │ measurement │ 1.96*SE │ per_fold │ # ├────────────────────────┼───────────┼─────────────┼─────────┼────────────────────────────────────────────────────────┤ # │ RootMeanSquaredError() │ predict │ 26800.0 │ 3280.0 │ [21400.0, 23700.0, 26800.0, 25900.0, 30800.0, 30700.0] │ # └────────────────────────┴───────────┴─────────────┴─────────┴────────────────────────────────────────────────────────┘
The text was updated successfully, but these errors were encountered:
d7a4dfa
OkonSamuel
No branches or pull requests
The
DoubleRegressor
example in the this section uses deprecated@from_network
macro.Here's an update to that example:
The text was updated successfully, but these errors were encountered: