Commits: JuliaLang/julia@07093784a68cb554da8fe25f1d34f92a3c9923e0 vs JuliaLang/julia@9b106adcdff120cdfc1fb0c0d6c50b68a787ce95
Comparison Diff: link
Triggered By: link
Tag Predicate: "inference"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["inference", "abstract_call_gf_by_type"] |
0.97 (5%) | 0.97 (1%) ✅ |
["inference", "construct_ssa!"] |
0.98 (5%) | 0.98 (1%) ✅ |
["inference", "domsort_ssa!"] |
0.98 (5%) | 0.98 (1%) ✅ |
["inference", "optimization", "abstract_call_gf_by_type"] |
1.00 (5%) | 0.97 (1%) ✅ |
["inference", "optimization", "construct_ssa!"] |
0.97 (5%) | 0.97 (1%) ✅ |
["inference", "optimization", "domsort_ssa!"] |
0.97 (5%) | 0.96 (1%) ✅ |
["inference", "optimization", "println(::QuoteNode)"] |
0.93 (5%) ✅ | 1.00 (1%) |
["inference", "optimization", "rand(Float64)"] |
1.02 (5%) | 0.93 (1%) ✅ |
["inference", "optimization", "sin(42)"] |
1.00 (5%) | 0.99 (1%) ✅ |
["inference", "println(::QuoteNode)"] |
0.99 (5%) | 0.99 (1%) ✅ |
["inference", "rand(Float64)"] |
0.98 (5%) | 0.99 (1%) ✅ |
["inference", "sin(42)"] |
0.97 (5%) | 0.99 (1%) ✅ |
Here's a list of all the benchmark groups executed by this job:
["inference", "abstract interpretation"]
["inference"]
["inference", "optimization"]
Julia Version 1.9.0-DEV.626
Commit 07093784a6 (2022-05-21 05:01 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3534 MHz 399678 s 1044 s 73734 s 109540961 s 0 s
#2 3509 MHz 6940256 s 747 s 298216 s 102852072 s 0 s
#3 3508 MHz 421540 s 691 s 58019 s 109600060 s 0 s
#4 3503 MHz 297337 s 794 s 56175 s 109326663 s 0 s
Memory: 31.32097625732422 GB (14541.53125 MB free)
Uptime: 1.101853729e7 sec
Load Avg: 1.0 1.09 1.07
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores
Julia Version 1.9.0-DEV.624
Commit 9b106adcdf (2022-05-21 03:09 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3550 MHz 399776 s 1044 s 73756 s 109548271 s 0 s
#2 3535 MHz 6946672 s 747 s 298303 s 102853013 s 0 s
#3 3532 MHz 422433 s 691 s 58048 s 109606579 s 0 s
#4 3565 MHz 297402 s 794 s 56186 s 109334015 s 0 s
Memory: 31.32097625732422 GB (14550.0234375 MB free)
Uptime: 1.101928173e7 sec
Load Avg: 1.01 1.04 1.06
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores