Commits: JuliaLang/julia@167c219ab98512ae09121ce5f19b29d7b044dc54 vs JuliaLang/julia@a734ae4e4aa7fc0aa7dba8d91060fd9462411536
Comparison Diff: link
Triggered By: link
Tag Predicate: !"scalar"
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["alloc", "grow_array"] |
1.05 (5%) ❌ | 1.00 (1%) |
["array", "accumulate", ("cumsum!", "Float64", "dim1")] |
0.92 (5%) ✅ | 1.00 (1%) |
["array", "accumulate", ("cumsum!", "Float64", "dim2")] |
0.92 (5%) ✅ | 1.00 (1%) |
["array", "accumulate", ("cumsum!", "Int")] |
1.22 (5%) ❌ | 1.00 (1%) |
["array", "cat", ("catnd", 5)] |
1.09 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("==", "UnitRange{Int64}")] |
0.91 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("==", "Vector{Int64}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("isequal", "UnitRange{Int64}")] |
1.22 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Int64} isequal UnitRange{Int64}")] |
1.11 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Int64}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["array", "reductions", ("sum", "Float64")] |
1.05 (5%) ❌ | 1.00 (1%) |
["array", "reductions", ("sumabs2", "Float64")] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "reverse", "rev_load_fast!"] |
1.08 (5%) ❌ | 1.00 (1%) |
["array", "setindex!", ("setindex!", 4)] |
0.94 (5%) ✅ | 1.00 (1%) |
["broadcast", "mix_scalar_tuple", (10, "scal_tup")] |
4.51 (5%) ❌ | 1.00 (1%) |
["broadcast", "mix_scalar_tuple", (10, "tup_tup")] |
1.08 (5%) ❌ | 1.00 (1%) |
["broadcast", "typeargs", ("tuple", 10)] |
1.11 (5%) ❌ | 1.00 (1%) |
["broadcast", "typeargs", ("tuple", 5)] |
0.94 (5%) ✅ | 1.00 (1%) |
["collection", "deletion", ("Dict", "Any", "pop!")] |
1.28 (25%) ❌ | 1.00 (1%) |
["collection", "deletion", ("Set", "Int", "filter!")] |
0.55 (25%) ✅ | 1.00 (1%) |
["collection", "set operations", ("Set", "Int", "⊆", "BitSet")] |
1.59 (25%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.5", "Vector{Bool}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.5", "Vector{Float32}")] |
1.05 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.5", "Vector{Float64}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.5", "Vector{UInt8}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.8", "Vector{Bool}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.8", "Vector{Float32}")] |
1.14 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.8", "Vector{Float64}")] |
1.13 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.8", "Vector{Int64}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.8", "Vector{Int8}")] |
1.13 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.8", "Vector{UInt64}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.95", "Vector{Bool}")] |
1.11 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.95", "Vector{Float32}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.95", "Vector{Float64}")] |
1.10 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.99", "Vector{Bool}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.99", "Vector{Float32}")] |
1.06 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("> q0.99", "Vector{Float64}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("Vector{Bool}", "10-90")] |
1.12 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("Vector{Bool}", "50-50")] |
1.14 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("Vector{Bool}", "90-10")] |
1.06 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Bool}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["find", "findall", ("ispos", "Vector{Int8}")] |
1.05 (5%) ❌ | 1.00 (1%) |
["find", "findnext", ("ispos", "Vector{UInt64}")] |
1.13 (5%) ❌ | 1.00 (1%) |
["inference", "abstract interpretation", "abstract_call_gf_by_type"] |
1.10 (5%) ❌ | 1.14 (1%) ❌ |
["inference", "abstract interpretation", "construct_ssa!"] |
1.12 (5%) ❌ | 1.13 (1%) ❌ |
["inference", "abstract interpretation", "domsort_ssa!"] |
1.13 (5%) ❌ | 1.13 (1%) ❌ |
["inference", "abstract interpretation", "println(::QuoteNode)"] |
1.14 (5%) ❌ | 1.14 (1%) ❌ |
["inference", "abstract interpretation", "rand(Float64)"] |
1.12 (5%) ❌ | 1.18 (1%) ❌ |
["inference", "abstract interpretation", "sin(42)"] |
1.14 (5%) ❌ | 1.13 (1%) ❌ |
["inference", "abstract_call_gf_by_type"] |
1.03 (5%) | 1.04 (1%) ❌ |
["inference", "construct_ssa!"] |
1.03 (5%) | 1.03 (1%) ❌ |
["inference", "domsort_ssa!"] |
1.04 (5%) | 1.02 (1%) ❌ |
["inference", "println(::QuoteNode)"] |
1.05 (5%) ❌ | 1.03 (1%) ❌ |
["inference", "rand(Float64)"] |
1.06 (5%) ❌ | 1.04 (1%) ❌ |
["inference", "sin(42)"] |
1.07 (5%) ❌ | 1.03 (1%) ❌ |
["misc", "23042", "Float64"] |
0.88 (5%) ✅ | 1.00 (1%) |
["misc", "foldl", "foldl(+, filter(...))"] |
0.86 (5%) ✅ | 1.00 (1%) |
["misc", "iterators", "zip(1:1000, 1:1000, 1:1000)"] |
1.09 (5%) ❌ | 1.00 (1%) |
["problem", "simplex", "simplex"] |
0.91 (5%) ✅ | 1.00 (1%) |
["random", "ranges", ("RangeGenerator", "Int128", "1:4294967295")] |
1.39 (25%) ❌ | 1.00 (1%) |
["shootout", "binary_trees"] |
1.05 (5%) ❌ | 1.00 (1%) |
["simd", ("CartesianPartition", "conditional_loop!", "Int32", 2, 63)] |
1.66 (20%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("IJV", 1000)] |
0.94 (5%) ✅ | 1.00 (1%) |
["sparse", "constructors", ("IV", 10)] |
1.11 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("SymTridiagonal", 100)] |
1.11 (5%) ❌ | 1.00 (1%) |
["sparse", "constructors", ("Tridiagonal", 100)] |
1.13 (5%) ❌ | 1.00 (1%) |
["string", "==(::SubString, ::String)", "different length"] |
1.09 (5%) ❌ | 1.00 (1%) |
["string", "readuntil", "target length 1"] |
1.14 (5%) ❌ | 1.00 (1%) |
["string", "repeat", "repeat str len 16"] |
1.06 (5%) ❌ | 1.00 (1%) |
["tuple", "index", ("sumelt", "TupleWrapper", 30, "Float32")] |
1.42 (40%) ❌ | 1.00 (1%) |
["tuple", "linear algebra", ("matmat", "(4, 4)", "(4, 4)")] |
1.64 (5%) ❌ | 1.00 (1%) |
["tuple", "linear algebra", ("matmat", "(8, 8)", "(8, 8)")] |
1.21 (5%) ❌ | 1.00 (1%) |
["tuple", "linear algebra", ("matvec", "(2, 2)", "(2,)")] |
0.88 (5%) ✅ | 1.00 (1%) |
["tuple", "linear algebra", ("matvec", "(8, 8)", "(8,)")] |
0.94 (5%) ✅ | 1.00 (1%) |
["tuple", "misc", "longtuple"] |
1.07 (5%) ❌ | 1.00 (1%) |
["tuple", "reduction", ("minimum", "(2,)")] |
1.07 (5%) ❌ | 1.00 (1%) |
["tuple", "reduction", ("sum", "(16,)")] |
0.91 (5%) ✅ | 1.00 (1%) |
["tuple", "reduction", ("sum", "(8,)")] |
1.25 (5%) ❌ | 1.00 (1%) |
["tuple", "reduction", ("sumabs", "(2, 2)")] |
1.07 (5%) ❌ | 1.00 (1%) |
["tuple", "reduction", ("sumabs", "(4,)")] |
1.60 (5%) ❌ | 1.00 (1%) |
["union", "array", ("broadcast", "*", "BigFloat", "(false, false)")] |
1.06 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum", "Float32", 1)] |
0.82 (5%) ✅ | 1.00 (1%) |
["union", "array", ("perf_sum3", "Int8", 0)] |
0.93 (5%) ✅ | 1.00 (1%) |
["union", "array", ("skipmissing", "sum", "Bool", 0)] |
1.06 (5%) ❌ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["alloc"]
["array", "accumulate"]
["array", "any/all"]
["array", "bool"]
["array", "cat"]
["array", "comprehension"]
["array", "convert"]
["array", "equality"]
["array", "growth"]
["array", "index"]
["array", "reductions"]
["array", "reverse"]
["array", "setindex!"]
["array", "subarray"]
["broadcast"]
["broadcast", "dotop"]
["broadcast", "fusion"]
["broadcast", "mix_scalar_tuple"]
["broadcast", "sparse"]
["broadcast", "typeargs"]
["collection", "deletion"]
["collection", "initialization"]
["collection", "iteration"]
["collection", "optimizations"]
["collection", "queries & updates"]
["collection", "set operations"]
["dates", "accessor"]
["dates", "arithmetic"]
["dates", "construction"]
["dates", "conversion"]
["dates", "parse"]
["dates", "query"]
["dates", "string"]
["find", "findall"]
["find", "findnext"]
["find", "findprev"]
["frontend"]
["inference", "abstract interpretation"]
["inference"]
["inference", "optimization"]
["io", "array_limit"]
["io", "read"]
["io", "serialization"]
["io"]
["linalg", "arithmetic"]
["linalg", "blas"]
["linalg", "factorization"]
["linalg"]
["micro"]
["misc"]
["misc", "23042"]
["misc", "afoldl"]
["misc", "allocation elision view"]
["misc", "bitshift"]
["misc", "foldl"]
["misc", "issue 12165"]
["misc", "iterators"]
["misc", "julia"]
["misc", "parse"]
["misc", "repeat"]
["misc", "splatting"]
["problem", "chaosgame"]
["problem", "fem"]
["problem", "go"]
["problem", "grigoriadis khachiyan"]
["problem", "imdb"]
["problem", "json"]
["problem", "laplacian"]
["problem", "monte carlo"]
["problem", "raytrace"]
["problem", "seismic"]
["problem", "simplex"]
["problem", "spellcheck"]
["problem", "stockcorr"]
["problem", "ziggurat"]
["random", "collections"]
["random", "randstring"]
["random", "ranges"]
["random", "sequences"]
["random", "types"]
["shootout"]
["simd"]
["sort", "insertionsort"]
["sort", "issorted"]
["sort", "mergesort"]
["sort", "quicksort"]
["sparse", "arithmetic"]
["sparse", "constructors"]
["sparse", "index"]
["sparse", "matmul"]
["sparse", "sparse matvec"]
["sparse", "sparse solves"]
["sparse", "transpose"]
["string", "==(::AbstractString, ::AbstractString)"]
["string", "==(::SubString, ::String)"]
["string", "findfirst"]
["string"]
["string", "readuntil"]
["string", "repeat"]
["tuple", "index"]
["tuple", "linear algebra"]
["tuple", "misc"]
["tuple", "reduction"]
["union", "array"]
Julia Version 1.9.0-DEV.539
Commit 167c219ab9 (2022-05-11 09:56 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3768 MHz 365676 s 968 s 68083 s 101223062 s 0 s
#2 3782 MHz 6184754 s 668 s 263195 s 95279509 s 0 s
#3 3578 MHz 384725 s 640 s 53556 s 101279198 s 0 s
#4 3521 MHz 266534 s 734 s 51838 s 101022492 s 0 s
Memory: 31.32097625732422 GB (15789.27734375 MB free)
Uptime: 1.018159366e7 sec
Load Avg: 1.0 1.0 1.0
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores
Julia Version 1.9.0-DEV.535
Commit a734ae4e4a (2022-05-11 08:48 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3568 MHz 366309 s 968 s 68249 s 101323957 s 0 s
#2 3758 MHz 6280859 s 668 s 267406 s 95281070 s 0 s
#3 3560 MHz 385651 s 640 s 53587 s 101380094 s 0 s
#4 3530 MHz 266706 s 734 s 51852 s 101123967 s 0 s
Memory: 31.32097625732422 GB (15500.796875 MB free)
Uptime: 1.019178163e7 sec
Load Avg: 1.0 1.0 1.0
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores