Skip to content

Latest commit

 

History

History
434 lines (413 loc) · 28.9 KB

File metadata and controls

434 lines (413 loc) · 28.9 KB

Benchmark Report

Job Properties

Commits: JuliaLang/julia@ae80fd32ae03c879b0b93ad1f0418d94227fee7f vs JuliaLang/julia@e5aff12f63f7a2141f1f4a3eb69ff049618d6fbc

Comparison Diff: link

Triggered By: link

Tag Predicate: ALL

Results

Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.

Below is a table of this job's results, obtained by running the benchmarks found in JuliaCI/BaseBenchmarks.jl. The values listed in the ID column have the structure [parent_group, child_group, ..., key], and can be used to index into the BaseBenchmarks suite to retrieve the corresponding benchmarks.

The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.

A ratio greater than 1.0 denotes a possible regression (marked with ❌), while a ratio less than 1.0 denotes a possible improvement (marked with ✅). Only significant results - results that indicate possible regressions or improvements - are shown below (thus, an empty table means that all benchmark results remained invariant between builds).

ID time ratio memory ratio
["array", "accumulate", ("cumsum!", "Float64", "dim1")] 1.15 (5%) ❌ 1.00 (1%)
["array", "accumulate", ("cumsum!", "Float64", "dim2")] 1.13 (5%) ❌ 1.00 (1%)
["array", "any/all", ("all", "Vector{Int16}")] 1.06 (5%) ❌ 1.00 (1%)
["array", "cat", ("catnd", 5)] 1.10 (5%) ❌ 1.00 (1%)
["array", "convert", ("Complex{Float64}", "Int")] 1.28 (5%) ❌ 1.00 (1%)
["array", "convert", ("Float64", "Int")] 0.65 (5%) ✅ 1.00 (1%)
["array", "equality", ("isequal", "UnitRange{Int64}")] 0.91 (5%) ✅ 1.00 (1%)
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Int64}")] 1.09 (5%) ❌ 1.00 (1%)
["array", "growth", ("push_multiple!", 8)] 0.87 (5%) ✅ 1.00 (1%)
["array", "growth", ("push_single!", 8)] 1.05 (5%) ❌ 1.00 (1%)
["array", "index", ("sumcolon", "SubArray{Float32, 2, Array{Float32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}")] 1.03 (50%) 1.02 (1%) ❌
["array", "index", ("sumcolon", "SubArray{Float32, 2, Base.ReshapedArray{Float32, 2, SubArray{Float32, 3, Array{Float32, 3}, Tuple{Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}, Tuple{}}, Tuple{Base.Slice{Base.OneTo{Int64}}, UnitRange{Int64}}, true}")] 1.50 (50%) 1.67 (1%) ❌
["array", "index", ("sumcolon", "SubArray{Float32, 2, BaseBenchmarks.ArrayBenchmarks.ArrayLS{Float32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, false}")] 1.02 (50%) 1.02 (1%) ❌
["array", "index", ("sumcolon", "SubArray{Int32, 2, Array{Int32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}")] 1.05 (50%) 1.02 (1%) ❌
["array", "index", ("sumcolon", "SubArray{Int32, 2, Base.ReshapedArray{Int32, 2, SubArray{Int32, 3, Array{Int32, 3}, Tuple{Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}, Tuple{}}, Tuple{Base.Slice{Base.OneTo{Int64}}, UnitRange{Int64}}, true}")] 1.51 (50%) ❌ 1.67 (1%) ❌
["array", "index", ("sumcolon", "SubArray{Int32, 2, BaseBenchmarks.ArrayBenchmarks.ArrayLS{Int32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, false}")] 1.04 (50%) 1.02 (1%) ❌
["array", "index", ("sumelt_boundscheck", "Base.ReinterpretArray{BaseBenchmarks.ArrayBenchmarks.PairVals{Int32}, 2, Int64, Matrix{Int64}, false}")] 3.44 (50%) ❌ 1.00 (1%)
["array", "index", ("sumelt_boundscheck", "Matrix{Int32}")] 4.00 (50%) ❌ 1.00 (1%)
["array", "index", ("sumelt_boundscheck", "Matrix{Int64}")] 2.12 (50%) ❌ 1.00 (1%)
["array", "index", ("sumrange", "SubArray{Float32, 2, Array{Float32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}")] 1.09 (50%) 1.02 (1%) ❌
["array", "index", ("sumrange", "SubArray{Float32, 2, BaseBenchmarks.ArrayBenchmarks.ArrayLS{Float32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, false}")] 1.10 (50%) 1.02 (1%) ❌
["array", "index", ("sumrange", "SubArray{Int32, 2, Array{Int32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, true}")] 1.12 (50%) 1.02 (1%) ❌
["array", "index", ("sumrange", "SubArray{Int32, 2, BaseBenchmarks.ArrayBenchmarks.ArrayLS{Int32, 3}, Tuple{Int64, Base.Slice{Base.OneTo{Int64}}, Base.Slice{Base.OneTo{Int64}}}, false}")] 1.11 (50%) 1.02 (1%) ❌
["array", "setindex!", ("setindex!", 4)] 1.07 (5%) ❌ 1.00 (1%)
["array", "setindex!", ("setindex!", 5)] 1.07 (5%) ❌ 1.00 (1%)
["broadcast", "mix_scalar_tuple", (10, "scal_tup")] 1.09 (5%) ❌ 1.00 (1%)
["broadcast", "mix_scalar_tuple", (3, "scal_tup_x3")] 4.18 (5%) ❌ 1.00 (1%)
["broadcast", "sparse", ("(1000, 1000)", 1)] 1.12 (5%) ❌ 1.00 (1%)
["broadcast", "typeargs", ("array", 3)] 1.06 (5%) ❌ 1.00 (1%)
["broadcast", "typeargs", ("array", 5)] 1.07 (5%) ❌ 1.00 (1%)
["broadcast", "typeargs", ("tuple", 10)] 1.10 (5%) ❌ 1.00 (1%)
["dates", "accessor", "millisecond"] 1.09 (5%) ❌ 1.00 (1%)
["dates", "arithmetic", ("Date", "Day")] 0.93 (5%) ✅ 1.00 (1%)
["dates", "arithmetic", ("DateTime", "Hour")] 1.10 (5%) ❌ 1.00 (1%)
["dates", "arithmetic", ("DateTime", "Minute")] 1.10 (5%) ❌ 1.00 (1%)
["dates", "parse", "DateTime"] 1.08 (5%) ❌ 1.00 (1%)
["find", "findall", ("Vector{Bool}", "90-10")] 0.81 (5%) ✅ 1.00 (1%)
["find", "findprev", ("BitVector", "90-10")] 0.94 (5%) ✅ 1.00 (1%)
["find", "findprev", ("ispos", "Vector{Int64}")] 1.06 (5%) ❌ 1.00 (1%)
["find", "findprev", ("ispos", "Vector{UInt64}")] 1.13 (5%) ❌ 1.00 (1%)
["find", "findprev", ("ispos", "Vector{UInt8}")] 1.09 (5%) ❌ 1.00 (1%)
["inference", "abstract interpretation", "many_opaque_closures"] 1.05 (5%) ❌ 1.00 (1%)
["inference", "optimization", "many_const_calls"] 0.93 (5%) ✅ 1.00 (1%)
["inference", "optimization", "println(::QuoteNode)"] 0.94 (5%) ✅ 1.00 (1%)
["io", "serialization", ("deserialize", "Matrix{Float64}")] 0.94 (5%) ✅ 1.00 (1%)
["misc", "23042", "Float64"] 0.94 (5%) ✅ 1.00 (1%)
["misc", "allocation elision view", "no conditional"] 0.93 (5%) ✅ 1.00 (1%)
["misc", "bitshift", ("Int", "Int")] 0.93 (5%) ✅ 1.00 (1%)
["misc", "bitshift", ("Int", "UInt")] 0.86 (5%) ✅ 1.00 (1%)
["misc", "foldl", "foldl(+, filter(...))"] 0.54 (5%) ✅ 1.00 (1%)
["misc", "perf highdim generator"] 1.33 (5%) ❌ 1.00 (1%)
["misc", "repeat", (200, 1, 24)] 1.24 (5%) ❌ 1.00 (1%)
["misc", "repeat", (200, 24, 1)] 1.18 (5%) ❌ 1.00 (1%)
["problem", "stockcorr", "stockcorr"] 0.94 (5%) ✅ 1.00 (1%)
["random", "collections", ("rand", "ImplicitRNG", "small BitSet")] 1.28 (25%) ❌ 1.00 (1%)
["random", "collections", ("rand", "MersenneTwister", "small BitSet")] 1.26 (25%) ❌ 1.00 (1%)
["scalar", "acos", ("0.5 <= abs(x) < 1", "negative argument", "Float64")] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "acos", ("abs(x) < 0.5", "negative argument", "Float64")] 1.35 (5%) ❌ 1.00 (1%)
["scalar", "acos", ("abs(x) < 0.5", "positive argument", "Float64")] 1.36 (5%) ❌ 1.00 (1%)
["scalar", "acos", ("small", "negative argument", "Float64")] 1.10 (5%) ❌ 1.00 (1%)
["scalar", "acos", ("zero", "Float64")] 0.91 (5%) ✅ 1.00 (1%)
["scalar", "acosh", ("one", "Float32")] 0.94 (5%) ✅ 1.00 (1%)
["scalar", "asin", ("one", "positive argument", "Float64")] 1.12 (5%) ❌ 1.00 (1%)
["scalar", "asin", ("small", "negative argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "asin", ("small", "positive argument", "Float64")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "asin", ("zero", "Float64")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "asinh", ("very small", "negative argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "asinh", ("very small", "positive argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "asinh", ("zero", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "atan", ("very large", "negative argument", "Float64")] 1.12 (5%) ❌ 1.00 (1%)
["scalar", "atan", ("very small", "negative argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "atan", ("very small", "positive argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "atan", ("zero", "Float64")] 1.12 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("x one", "Float32")] 1.46 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("x zero", "y positive", "Float32")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "atan2", ("y finite", "y positive", "x infinite", "x positive", "Float32")] 0.95 (5%) ✅ 1.00 (1%)
["scalar", "atanh", ("one", "Float64")] 1.14 (5%) ❌ 1.00 (1%)
["scalar", "cbrt", ("large", "positive argument", "Float32")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "cbrt", ("zero", "Float32")] 0.94 (5%) ✅ 1.00 (1%)
["scalar", "cos", ("argument reduction (easy) abs(x) < 2.0^20π/4", "negative argument", "Float64", "cos_kernel")] 1.20 (5%) ❌ 1.00 (1%)
["scalar", "cos", ("argument reduction (easy) abs(x) < 2.0^20π/4", "positive argument", "Float64", "cos_kernel")] 1.20 (5%) ❌ 1.00 (1%)
["scalar", "cosh", ("0 <= abs(x) < 2.7755602085408512e-17", "negative argument", "Float64")] 1.10 (5%) ❌ 1.00 (1%)
["scalar", "cosh", ("0.00024414062f0 <= abs(x) < 9f0", "positive argument", "Float32")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "cosh", ("very small", "positive argument", "Float64")] 1.09 (5%) ❌ 1.00 (1%)
["scalar", "exp2", ("2pow1023", "negative argument", "Float64")] 1.09 (5%) ❌ 1.00 (1%)
["scalar", "exp2", ("2pow1023", "positive argument", "Float64")] 1.17 (5%) ❌ 1.00 (1%)
["scalar", "exp2", ("2pow127", "negative argument", "Float32")] 1.12 (5%) ❌ 1.00 (1%)
["scalar", "exp2", ("2pow127", "positive argument", "Float32")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "exp2", ("2pow35", "negative argument", "Float64")] 1.06 (5%) ❌ 1.00 (1%)
["scalar", "expm1", ("large", "negative argument", "Float64")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "expm1", ("large", "positive argument", "Float64")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "expm1", ("medium", "negative argument", "Float64")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "intfuncs", ("#8", "UInt64", "+")] 1.28 (25%) ❌ 1.00 (1%)
["scalar", "mod2pi", ("argument reduction (easy) abs(x) < 5π/4", "positive argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "mod2pi", ("argument reduction (hard) abs(x) < 6π/4", "positive argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 3π/4", "negative argument", "Float64")] 1.17 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 3π/4", "positive argument", "Float64")] 1.17 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 4π/4", "negative argument", "Float64")] 1.12 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 4π/4", "positive argument", "Float64")] 1.31 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 5π/4", "negative argument", "Float64")] 1.12 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 6π/4", "positive argument", "Float64")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (easy) abs(x) < 9π/4", "positive argument", "Float64")] 1.11 (5%) ❌ 1.00 (1%)
["scalar", "rem_pio2", ("argument reduction (hard) abs(x) < 2π/4", "negative argument", "Float64")] 0.80 (5%) ✅ 1.00 (1%)
["scalar", "sin", ("argument reduction (easy) abs(x) < 2.0^20π/4", "negative argument", "Float64", "sin_kernel")] 1.08 (5%) ❌ 1.00 (1%)
["scalar", "sin", ("argument reduction (easy) abs(x) < 2.0^20π/4", "positive argument", "Float64", "sin_kernel")] 1.08 (5%) ❌ 1.00 (1%)
["scalar", "sinh", ("2.0^-28 <= abs(x) < 22.0", "positive argument", "Float64")] 1.16 (5%) ❌ 1.00 (1%)
["scalar", "sinh", ("very large", "positive argument", "Float64")] 0.74 (5%) ✅ 1.00 (1%)
["scalar", "tan", ("large", "positive argument", "Float64")] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "tan", ("small", "negative argument", "Float64")] 0.90 (5%) ✅ 1.00 (1%)
["scalar", "tan", ("small", "positive argument", "Float32")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "tan", ("small", "positive argument", "Float64")] 0.91 (5%) ✅ 1.00 (1%)
["scalar", "tan", ("very small", "positive argument", "Float64")] 0.81 (5%) ✅ 1.00 (1%)
["scalar", "tanh", ("0 <= abs(x) < 2f0^-12", "positive argument", "Float32")] 1.05 (5%) ❌ 1.00 (1%)
["scalar", "tanh", ("1.0 <= abs(x) < 22.0", "negative argument", "Float64")] 0.79 (5%) ✅ 1.00 (1%)
["scalar", "tanh", ("1.0 <= abs(x) < 22.0", "positive argument", "Float64")] 0.79 (5%) ✅ 1.00 (1%)
["scalar", "tanh", ("very large", "negative argument", "Float32")] 1.07 (5%) ❌ 1.00 (1%)
["scalar", "tanh", ("very large", "negative argument", "Float64")] 1.10 (5%) ❌ 1.00 (1%)
["scalar", "tanh", ("very large", "positive argument", "Float32")] 1.07 (5%) ❌ 1.00 (1%)
["shootout", "k_nucleotide"] 0.78 (5%) ✅ 1.00 (1%)
["simd", ("Cartesian", "axpy!", "Int32", 2, 63)] 1.21 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "conditional_loop!", "Int32", 2, 32)] 0.77 (20%) ✅ 1.00 (1%)
["simd", ("Cartesian", "conditional_loop!", "Int32", 3, 31)] 0.76 (20%) ✅ 1.00 (1%)
["simd", ("Cartesian", "conditional_loop!", "Int32", 3, 63)] 0.76 (20%) ✅ 1.00 (1%)
["simd", ("Cartesian", "conditional_loop!", "Int64", 3, 31)] 1.35 (20%) ❌ 1.00 (1%)
["simd", ("Cartesian", "inner", "Int32", 2, 31)] 1.29 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "conditional_loop!", "Int32", 3, 31)] 1.22 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "conditional_loop!", "Int32", 3, 63)] 0.64 (20%) ✅ 1.00 (1%)
["simd", ("CartesianPartition", "inner", "Float64", 3, 31)] 0.74 (20%) ✅ 1.00 (1%)
["simd", ("CartesianPartition", "inner", "Int32", 4, 31)] 0.79 (20%) ✅ 1.00 (1%)
["simd", ("CartesianPartition", "manual_example!", "Float64", 3, 31)] 1.46 (20%) ❌ 1.00 (1%)
["simd", ("CartesianPartition", "two_reductions", "Float64", 3, 31)] 1.38 (20%) ❌ 1.00 (1%)
["simd", ("Linear", "auto_conditional_loop!", "Int32", 4095)] 0.72 (20%) ✅ 1.00 (1%)
["sort", "insertionsort", "sort forwards"] 1.22 (20%) ❌ 1.00 (1%)
["sort", "issues", "small Int view"] 1.35 (20%) ❌ 1.00 (1%)
["sort", "length = 3", "Float64 unions with missing"] 1.22 (20%) ❌ 1.00 (1%)
["sort", "length = 3", "sort!(rand(Int, length))"] 1.44 (20%) ❌ 1.00 (1%)
["sort", "length = 3", "sort(rand(2n, 2n, n); dims=2)"] 1.21 (20%) ❌ 1.00 (1%)
["sort", "length = 3", "sort(randn(length))"] 1.25 (20%) ❌ 1.00 (1%)
["sort", "length = 30", "sort!(fill(missing, length))"] 1.38 (20%) ❌ 1.00 (1%)
["sparse", "constructors", ("Bidiagonal", 10)] 1.10 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("IV", 10)] 1.06 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("SymTridiagonal", 10)] 1.09 (5%) ❌ 1.00 (1%)
["sparse", "constructors", ("Tridiagonal", 10)] 1.07 (5%) ❌ 1.00 (1%)
["string", "==(::SubString, ::String)", "different length"] 0.93 (5%) ✅ 1.00 (1%)
["string", "readuntil", "target length 2"] 1.05 (5%) ❌ 1.00 (1%)
["string", "repeat", "repeat str len 1"] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matmat", "(2, 2)", "(2, 2)")] 1.14 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(16, 16)", "(16,)")] 0.85 (5%) ✅ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(2, 2)", "(2,)")] 1.13 (5%) ❌ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(4, 4)", "(4,)")] 0.85 (5%) ✅ 1.00 (1%)
["tuple", "linear algebra", ("matvec", "(8, 8)", "(8,)")] 0.76 (5%) ✅ 1.00 (1%)
["tuple", "misc", "11899"] 1.10 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("minimum", "(2, 2)")] 1.06 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("minimum", "(2,)")] 1.13 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("minimum", "(4, 4)")] 1.32 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("minimum", "(4,)")] 1.29 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sum", "(2, 2)")] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sum", "(2,)")] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sum", "(4,)")] 1.13 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sumabs", "(2, 2)")] 1.13 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sumabs", "(2,)")] 1.07 (5%) ❌ 1.00 (1%)
["tuple", "reduction", ("sumabs", "(4,)")] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "*", "Float32", "(false, true)")] 0.91 (5%) ✅ 1.00 (1%)
["union", "array", ("broadcast", "*", "Float64", "(false, true)")] 1.11 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "abs", "Int8", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "identity", "BigFloat", 1)] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "identity", "Float32", 1)] 1.26 (5%) ❌ 1.00 (1%)
["union", "array", ("broadcast", "identity", "Int8", 0)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("collect", "all", "Bool", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("collect", "all", "Float32", 1)] 1.10 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "*", "BigFloat", "(false, true)")] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "*", "BigFloat", "(true, true)")] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "abs", "Bool", 1)] 0.93 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "abs", "Float32", 1)] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "abs", "Int64", 1)] 0.93 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "abs", "Int8", 1)] 0.95 (5%) ✅ 1.00 (1%)
["union", "array", ("map", "identity", "BigFloat", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "identity", "Bool", 1)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "identity", "Float32", 1)] 1.10 (5%) ❌ 1.00 (1%)
["union", "array", ("map", "identity", "Float64", 1)] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "BigFloat", "(false, true)")] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "BigFloat", "(true, true)")] 1.05 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "Float32", "(true, true)")] 1.09 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "Int64", "(true, true)")] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_binaryop", "*", "Int8", "(true, true)")] 0.91 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_simplecopy", "Float32", 1)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum", "BigFloat", 0)] 1.06 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum", "Int8", 0)] 0.89 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum2", "Int8", 0)] 0.79 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum2", "Int8", 1)] 0.88 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum3", "Bool", 1)] 0.81 (5%) ✅ 1.00 (1%)
["union", "array", ("perf_sum3", "ComplexF64", 1)] 1.09 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum3", "Float32", 1)] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("perf_sum4", "Int8", 1)] 1.07 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "collect", "Int8", 0)] 0.93 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "collect", "Union{Nothing, BigFloat}", 0)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "filter", "Union{Nothing, Int64}", 0)] 1.08 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Missing, BigFloat}", 1)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Missing, Float64}", 1)] 1.09 (5%) ❌ 1.00 (1%)
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Nothing, BigFloat}", 0)] 0.94 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Nothing, Int64}", 0)] 0.81 (5%) ✅ 1.00 (1%)
["union", "array", ("skipmissing", "sum", "Int8", 0)] 1.06 (5%) ❌ 1.00 (1%)

Benchmark Group List

Here's a list of all the benchmark groups executed by this job:

  • ["alloc"]
  • ["array", "accumulate"]
  • ["array", "any/all"]
  • ["array", "bool"]
  • ["array", "cat"]
  • ["array", "comprehension"]
  • ["array", "convert"]
  • ["array", "equality"]
  • ["array", "growth"]
  • ["array", "index"]
  • ["array", "reductions"]
  • ["array", "reverse"]
  • ["array", "setindex!"]
  • ["array", "subarray"]
  • ["broadcast"]
  • ["broadcast", "dotop"]
  • ["broadcast", "fusion"]
  • ["broadcast", "mix_scalar_tuple"]
  • ["broadcast", "sparse"]
  • ["broadcast", "typeargs"]
  • ["collection", "deletion"]
  • ["collection", "initialization"]
  • ["collection", "iteration"]
  • ["collection", "optimizations"]
  • ["collection", "queries & updates"]
  • ["collection", "set operations"]
  • ["dates", "accessor"]
  • ["dates", "arithmetic"]
  • ["dates", "construction"]
  • ["dates", "conversion"]
  • ["dates", "parse"]
  • ["dates", "query"]
  • ["dates", "string"]
  • ["find", "findall"]
  • ["find", "findnext"]
  • ["find", "findprev"]
  • ["frontend"]
  • ["inference", "abstract interpretation"]
  • ["inference", "allinference"]
  • ["inference", "optimization"]
  • ["io", "array_limit"]
  • ["io", "read"]
  • ["io", "serialization"]
  • ["io"]
  • ["linalg", "arithmetic"]
  • ["linalg", "blas"]
  • ["linalg", "factorization"]
  • ["linalg"]
  • ["micro"]
  • ["misc"]
  • ["misc", "23042"]
  • ["misc", "afoldl"]
  • ["misc", "allocation elision view"]
  • ["misc", "bitshift"]
  • ["misc", "foldl"]
  • ["misc", "issue 12165"]
  • ["misc", "iterators"]
  • ["misc", "julia"]
  • ["misc", "parse"]
  • ["misc", "repeat"]
  • ["misc", "splatting"]
  • ["problem", "chaosgame"]
  • ["problem", "fem"]
  • ["problem", "go"]
  • ["problem", "grigoriadis khachiyan"]
  • ["problem", "imdb"]
  • ["problem", "json"]
  • ["problem", "laplacian"]
  • ["problem", "monte carlo"]
  • ["problem", "raytrace"]
  • ["problem", "seismic"]
  • ["problem", "simplex"]
  • ["problem", "spellcheck"]
  • ["problem", "stockcorr"]
  • ["problem", "ziggurat"]
  • ["random", "collections"]
  • ["random", "randstring"]
  • ["random", "ranges"]
  • ["random", "sequences"]
  • ["random", "types"]
  • ["scalar", "acos"]
  • ["scalar", "acosh"]
  • ["scalar", "arithmetic"]
  • ["scalar", "asin"]
  • ["scalar", "asinh"]
  • ["scalar", "atan"]
  • ["scalar", "atan2"]
  • ["scalar", "atanh"]
  • ["scalar", "cbrt"]
  • ["scalar", "cos"]
  • ["scalar", "cosh"]
  • ["scalar", "exp2"]
  • ["scalar", "expm1"]
  • ["scalar", "fastmath"]
  • ["scalar", "floatexp"]
  • ["scalar", "intfuncs"]
  • ["scalar", "iteration"]
  • ["scalar", "mod2pi"]
  • ["scalar", "predicate"]
  • ["scalar", "rem_pio2"]
  • ["scalar", "sin"]
  • ["scalar", "sincos"]
  • ["scalar", "sinh"]
  • ["scalar", "tan"]
  • ["scalar", "tanh"]
  • ["shootout"]
  • ["simd"]
  • ["sort", "insertionsort"]
  • ["sort", "issorted"]
  • ["sort", "issues"]
  • ["sort", "length = 10"]
  • ["sort", "length = 100"]
  • ["sort", "length = 1000"]
  • ["sort", "length = 10000"]
  • ["sort", "length = 3"]
  • ["sort", "length = 30"]
  • ["sort", "mergesort"]
  • ["sort", "quicksort"]
  • ["sparse", "arithmetic"]
  • ["sparse", "constructors"]
  • ["sparse", "index"]
  • ["sparse", "matmul"]
  • ["sparse", "sparse matvec"]
  • ["sparse", "sparse solves"]
  • ["sparse", "transpose"]
  • ["string", "==(::AbstractString, ::AbstractString)"]
  • ["string", "==(::SubString, ::String)"]
  • ["string", "findfirst"]
  • ["string"]
  • ["string", "readuntil"]
  • ["string", "repeat"]
  • ["tuple", "index"]
  • ["tuple", "linear algebra"]
  • ["tuple", "misc"]
  • ["tuple", "reduction"]
  • ["union", "array"]

Version Info

Primary Build

Julia Version 1.12.0-DEV.1431
Commit ae80fd32ae (2024-10-18 15:49 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 5.15.0-112-generic #122-Ubuntu SMP Thu May 23 07:48:21 UTC 2024 x86_64 x86_64
  CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz: 
              speed         user         nice          sys         idle          irq
       #1  3500 MHz     415532 s        164 s     135000 s  112394293 s          0 s
       #2  3500 MHz    2569093 s        119 s     121003 s  110259749 s          0 s
       #3  3500 MHz     277890 s        136 s      70808 s  112627185 s          0 s
       #4  3500 MHz     267923 s         77 s      72355 s  112639559 s          0 s
       #5  3477 MHz     225258 s         64 s      52090 s  112605114 s          0 s
       #6  3477 MHz     238551 s        128 s      58844 s  112044964 s          0 s
       #7  3503 MHz     268190 s         81 s      58928 s  112546167 s          0 s
       #8  3502 MHz     267428 s         73 s      62372 s  112616577 s          0 s
  Memory: 31.30147933959961 GB (19664.20703125 MB free)
  Uptime: 1.130417398e7 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, haswell)
Threads: 1 default, 0 interactive, 1 GC (on 8 virtual cores)

Comparison Build

Julia Version 1.12.0-DEV.1429
Commit e5aff12f63 (2024-10-18 15:01 UTC)
Platform Info:
  OS: Linux (x86_64-linux-gnu)
      Ubuntu 22.04.4 LTS
  uname: Linux 5.15.0-112-generic #122-Ubuntu SMP Thu May 23 07:48:21 UTC 2024 x86_64 x86_64
  CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz: 
              speed         user         nice          sys         idle          irq
       #1  3500 MHz     416788 s        164 s     135754 s  112548660 s          0 s
       #2  3501 MHz    2722768 s        119 s     123197 s  110260719 s          0 s
       #3  3500 MHz     278522 s        136 s      70825 s  112783352 s          0 s
       #4  3500 MHz     267993 s         77 s      72362 s  112796306 s          0 s
       #5  3500 MHz     225309 s         64 s      52096 s  112761754 s          0 s
       #6  3491 MHz     238635 s        128 s      58851 s  112201431 s          0 s
       #7  3501 MHz     268460 s         81 s      58941 s  112702708 s          0 s
       #8  3499 MHz     267495 s         73 s      62381 s  112773316 s          0 s
  Memory: 31.30147933959961 GB (19681.73046875 MB free)
  Uptime: 1.131985806e7 sec
  Load Avg:  1.0  1.0  1.0
  WORD_SIZE: 64
  LLVM: libLLVM-18.1.7 (ORCJIT, haswell)
Threads: 1 default, 0 interactive, 1 GC (on 8 virtual cores)