Commits: JuliaLang/julia@da80016943bd4dcf38a201f7d1af03fbe1d2ce9c vs JuliaLang/julia@902a5c199d590552758f7a91cc75c47ea67de5f2
Comparison Diff: link
Triggered By: link
Tag Predicate: "array" || ("sparse" || "inference")
Note: If Chrome is your browser, I strongly recommend installing the Wide GitHub extension, which makes the result table easier to read.
Below is a table of this job's results, obtained by running the benchmarks found in
JuliaCI/BaseBenchmarks.jl. The values
listed in the ID
column have the structure [parent_group, child_group, ..., key]
,
and can be used to index into the BaseBenchmarks suite to retrieve the corresponding
benchmarks.
The percentages accompanying time and memory values in the below table are noise tolerances. The "true" time/memory value for a given benchmark is expected to fall within this percentage of the reported value.
A ratio greater than 1.0
denotes a possible regression (marked with ❌), while a ratio less
than 1.0
denotes a possible improvement (marked with ✅). Only significant results - results
that indicate possible regressions or improvements - are shown below (thus, an empty table means that all
benchmark results remained invariant between builds).
ID | time ratio | memory ratio |
---|---|---|
["array", "bool", "boolarray_bool_load!"] |
0.92 (5%) ✅ | 1.00 (1%) |
["array", "cat", ("catnd", 5)] |
0.94 (5%) ✅ | 1.00 (1%) |
["array", "cat", ("catnd_setind", 5)] |
0.85 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("==", "UnitRange{Int64}")] |
0.91 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("==", "Vector{Int64} == UnitRange{Int64}")] |
0.91 (5%) ✅ | 1.00 (1%) |
["array", "equality", ("isequal", "UnitRange{Int64}")] |
1.22 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Int64} isequal UnitRange{Int64}")] |
1.10 (5%) ❌ | 1.00 (1%) |
["array", "equality", ("isequal", "Vector{Int64} isequal Vector{Int64}")] |
1.07 (5%) ❌ | 1.00 (1%) |
["array", "growth", ("append!", 8)] |
1.05 (5%) ❌ | 1.00 (1%) |
["array", "reductions", ("mean", "Float64")] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "reductions", ("perf_reduce", "Int64")] |
1.06 (5%) ❌ | 1.00 (1%) |
["array", "reductions", ("sumabs", "Float64")] |
1.06 (5%) ❌ | 1.00 (1%) |
["simd", ("Linear", "manual_example!", "Float32", 4095)] |
0.78 (20%) ✅ | 1.00 (1%) |
["sparse", "constructors", ("Bidiagonal", 10)] |
0.92 (5%) ✅ | 1.00 (1%) |
["sparse", "constructors", ("Diagonal", 10)] |
0.95 (5%) ✅ | 1.00 (1%) |
["sparse", "constructors", ("IJV", 10)] |
0.91 (5%) ✅ | 1.00 (1%) |
["sparse", "constructors", ("SymTridiagonal", 10)] |
0.93 (5%) ✅ | 1.00 (1%) |
["sparse", "constructors", ("Tridiagonal", 10)] |
0.94 (5%) ✅ | 1.00 (1%) |
["union", "array", ("broadcast", "abs", "BigFloat", 1)] |
0.85 (5%) ✅ | 1.00 (1%) |
["union", "array", ("broadcast", "abs", "Bool", 1)] |
0.84 (5%) ✅ | 1.00 (1%) |
["union", "array", ("collect", "all", "BigInt", 1)] |
1.05 (5%) ❌ | 1.00 (1%) |
["union", "array", ("collect", "all", "Int8", 1)] |
0.83 (5%) ✅ | 1.00 (1%) |
["union", "array", ("map", "identity", "BigInt", 1)] |
1.06 (5%) ❌ | 1.00 (1%) |
["union", "array", ("map", "identity", "Int8", 1)] |
0.83 (5%) ✅ | 1.00 (1%) |
["union", "array", ("perf_sum", "Float64", 1)] |
1.14 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum3", "Bool", 0)] |
1.07 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum3", "Bool", 1)] |
1.06 (5%) ❌ | 1.00 (1%) |
["union", "array", ("perf_sum3", "Float32", 1)] |
1.11 (5%) ❌ | 1.00 (1%) |
["union", "array", ("skipmissing", "eachindex", "Union{Missing, ComplexF64}", 1)] |
1.05 (5%) ❌ | 1.00 (1%) |
["union", "array", ("skipmissing", "perf_sumskipmissing", "Union{Missing, Int64}", 1)] |
1.07 (5%) ❌ | 1.00 (1%) |
["union", "array", ("skipmissing", "sum", "Union{Missing, ComplexF64}", 1)] |
0.78 (5%) ✅ | 1.00 (1%) |
Here's a list of all the benchmark groups executed by this job:
["array", "accumulate"]
["array", "any/all"]
["array", "bool"]
["array", "cat"]
["array", "comprehension"]
["array", "convert"]
["array", "equality"]
["array", "growth"]
["array", "index"]
["array", "reductions"]
["array", "reverse"]
["array", "setindex!"]
["array", "subarray"]
["broadcast", "dotop"]
["broadcast", "fusion"]
["broadcast", "sparse"]
["broadcast", "typeargs"]
["inference", "abstract interpretation"]
["inference"]
["inference", "optimization"]
["io", "array_limit"]
["linalg", "arithmetic"]
["linalg", "blas"]
["linalg", "factorization"]
["linalg"]
["misc", "julia"]
["misc", "repeat"]
["misc", "splatting"]
["problem", "fem"]
["problem", "laplacian"]
["simd"]
["sparse", "arithmetic"]
["sparse", "constructors"]
["sparse", "index"]
["sparse", "matmul"]
["sparse", "sparse matvec"]
["sparse", "sparse solves"]
["sparse", "transpose"]
["union", "array"]
Julia Version 1.9.0-DEV.472
Commit da80016943 (2022-05-06 05:41 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3636 MHz 320926 s 912 s 63513 s 96773902 s 0 s
#2 3518 MHz 5382658 s 618 s 228211 s 91614948 s 0 s
#3 3504 MHz 335714 s 607 s 50126 s 96830449 s 0 s
#4 3504 MHz 229934 s 705 s 48587 s 96572531 s 0 s
Memory: 31.32097625732422 GB (16369.234375 MB free)
Uptime: 9.73110879e6 sec
Load Avg: 1.04 1.03 1.0
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores
Julia Version 1.9.0-DEV.470
Commit 902a5c199d (2022-05-05 15:00 UTC)
Platform Info:
OS: Linux (x86_64-linux-gnu)
Ubuntu 20.04.3 LTS
uname: Linux 5.4.0-94-generic #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC 2022 x86_64 x86_64
CPU: Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50GHz:
speed user nice sys idle irq
#1 3505 MHz 321572 s 912 s 63655 s 96841266 s 0 s
#2 3517 MHz 5447170 s 618 s 230386 s 91616650 s 0 s
#3 3502 MHz 336560 s 607 s 50156 s 96897944 s 0 s
#4 3503 MHz 230290 s 705 s 48603 s 96640412 s 0 s
Memory: 31.32097625732422 GB (16072.16796875 MB free)
Uptime: 9.73794813e6 sec
Load Avg: 1.0 1.0 1.0
WORD_SIZE: 64
LIBM: libopenlibm
LLVM: libLLVM-13.0.1 (ORCJIT, haswell)
Threads: 1 on 4 virtual cores