
Documenter.jl

Michael Hatherly, Morten Piibeleht, and contributors.

February 14, 2021

i

Contents

Contents ii

I Home 1

1 Documenter.jl 2

1.1 Package Features . 2

1.2 Manual Outline . 3

1.3 Library Outline . 3

II Manual 4

2 Guide 5

2.1 Package Guide . 5

3 Examples 12

3.1 Registered . 12

3.2 Documentation repositories . 13

4 Syntax 14

4.1 @docs block . 14

4.2 @autodocs block . 15

4.3 @ref link . 16

4.4 @meta block . 18

4.5 @index block . 18

4.6 @contents block . 19

4.7 @example block . 19

4.8 @repl block . 21

4.9 @setup <name> block . 22

4.10 @eval block . 23

4.11 @raw <format> block . 23

5 Doctests 25

5.1 "Script" Examples . 25

5.2 REPL Examples . 26

5.3 Exceptions . 26

5.4 Preserving Definitions Between Blocks . 27

5.5 Setup Code . 28

5.6 Filtering Doctests . 29

5.7 Doctesting as Part of Testing . 30

ii

CONTENTS iii

5.8 Fixing Outdated Doctests . 30

5.9 Skipping Doctests . 31

6 LATEXSyntax 32

6.1 Escaping Characters in Docstrings . 32

6.2 Inline Equations . 33

6.3 Display Equations . 33

7 Hosting Documentation 35

7.1 Overview . 35

7.2 Travis CI . 36

7.3 GitHub Actions . 38

7.4 docs/Project.toml . 39

7.5 The deploydocs Function . 40

7.6 .gitignore . 40

7.7 gh-pages Branch . 40

7.8 Documentation Versions . 41

7.9 Deployment systems . 42

7.10 SSH Deploy Keys Walkthrough . 45

8 Other Output Formats 52

8.1 PDF Output via LaTeX . 52

8.2 Markdown & MkDocs . 53

III Showcase 56

9 Table of contents 58

10 Basic Markdown 59

IV Heading 1 60

11 Heading 2 61

11.1 Heading 3 . 61

11.2 Lists . 62

11.3 Tables . 64

11.4 Footnotes . 64

11.5 Headings . 64

11.6 Heading level 3 . 64

12 Docstrings 66

12.1 An index of docstrings . 67

12.2 Multiple uses of the same symbol . 67

13 Doctesting example 68

14 Running interactive code 69

14.1 REPL-type . 70

15 Doctest showcase 71

CONTENTS iv

V Library 72

16 Public 73

16.1 Public Documentation . 73

17 Internals 86

17.1 Anchors . 86

17.2 Builder . 87

17.3 CrossReferences . 89

17.4 DocChecks . 89

17.5 DocMeta . 90

17.6 DocSystem . 90

17.7 DocTests . 92

17.8 Documenter . 92

17.9 DocumenterTools . 93

17.10Documents . 95

17.11DOM . 96

17.12Expanders . 99

17.13Markdown2 . 101

17.14MDFlatten . 103

17.15Selectors . 104

17.16TextDiff . 106

17.17Utilities . 106

17.18Writers . 110

VI Contributing 118

18 Branches 120

18.1 Backports . 120

18.2 release-* branches . 120

19 Style Guide 121

19.1 Julia . 121

19.2 Markdown . 122

Part I

Home

1

Chapter 1

Documenter.jl

A documentation generator for Julia.

A package for building documentation from docstrings and markdown files.

Note

Please read through the Documentation section of the main Julia manual if this is your first time

using Julia's documentation system. Once you've read through how to write documentation for

your code then come back here.

1.1 Package Features

• Write all your documentation in Markdown.

• Minimal configuration.

• Supports Julia 0.7 and 1.0.

• Doctests Julia code blocks.

• Cross references for docs and section headers.

• LATEXsyntax support.

• Checks for missing docstrings and incorrect cross references.

• Generates tables of contents and docstring indexes.

• Automatically builds and deploys docs from Travis to GitHub Pages.

The Package Guide provides a tutorial explaining how to get started using Documenter.

Some examples of packages using Documenter can be found on the Examples page.

See the Index for the complete list of documented functions and types.

2

https://docs.julialang.org/en/v1/manual/documentation/
https://en.wikipedia.org/wiki/Markdown

CHAPTER 1. DOCUMENTER.JL 3

1.2 Manual Outline

• Package Guide

• Examples

• Syntax

• Doctests

• Hosting Documentation

• LATEXSyntax

1.3 Library Outline

• Public Documentation

– Contents

– Index

– Public Interface

– DocumenterTools

Index

• Documenter

• Documenter.Deps

• Documenter.DocMeta

• Documenter.Deps.pip

• Documenter.DocMeta.getdocmeta

• Documenter.DocMeta.setdocmeta!

• Documenter.Writers.HTMLWriter.asset

• Documenter.deploydocs

• Documenter.doctest

• Documenter.hide

• Documenter.makedocs

• DocumenterTools.generate

• DocumenterTools.genkeys

Part II

Manual

4

Chapter 2

Guide

2.1 Package Guide

Documenter is designed to do one thing – combine markdown files and inline docstrings from Julia's docsystem

into a single inter-linked document. What follows is a step-by-step guide to creating a simple document.

Installation

Documenter can be installed using the Julia package manager. From the Julia REPL, type] to enter the Pkg

REPL mode and run

pkg> add Documenter

Setting up the Folder Structure

Note

The function DocumenterTools.generate from the DocumenterTools package can generate the

basic structure that Documenter expects.

Firstly, we need a Julia module to document. This could be a package generated via PkgDev.generate or a

single .jl script accessible via Julia's LOAD_PATH. For this guide we'll be using a package called Example.jl

that has the following directory layout:

Example/├──

src/│

└── Example.jl

...

Note that the ... just represent unimportant files and folders.

We must decide on a location where we'd like to store the documentation for this package. It's recommended

to use a folder named docs/ in the toplevel of the package, like so

Example/├──

docs/│

└── ...├──

src/│

└── Example.jl

...

5

CHAPTER 2. GUIDE 6

Inside the docs/ folder we need to add two things. A source folder which will contain the markdown files that

will be used to build the finished document and a Julia script that will be used to control the build process. The

following names are recommended

docs/├──

src/└──

make.jl

Building an Empty Document

With our docs/ directory now setup we're going to build our first document. It'll just be a single empty file at

the moment, but we'll be adding to it later on.

Add the following to your make.jl file

using Documenter, Example

makedocs(sitename="My Documentation")

This assumes you've installed Documenter as discussed in Installation and that your Example.jl package can

be found by Julia.

Note

If your source directory is not accessible through Julia's LOAD_PATH, you might wish to add the

following line at the top of make.jl

push!(LOAD_PATH,"../src/")

Now add an index.md file to the src/ directory.

Note

If you use Documenter's default HTML output the name index.md is mandatory. This file will be

the main page of the rendered HTML documentation.

Leave the newly added file empty and then run the following command from the docs/ directory

$ julia make.jl

Note that $ just represents the prompt character. You don't need to type that.

If you'd like to see the output from this command in color use

$ julia --color=yes make.jl

When you run that you should see the following output

Documenter: setting up build directory.

Documenter: expanding markdown templates.

Documenter: building cross-references.

Documenter: running document checks.

> checking for missing docstrings.

> running doctests.

> checking footnote links.

Documenter: populating indices.

Documenter: rendering document.

CHAPTER 2. GUIDE 7

The docs/ folder should contain a new directory – called build/. Its structure should look like the following

build/├──

assets/│

├── arrow.svg│

├── documenter.css│

├── documenter.js│

└── search.js├──

index.html├──

search/index.html└──

search_index.js

Note

By default, Documenter has pretty URLs enabled, which means that src/foo.md is turned into

src/foo/index.html, instead of simply src/foo.html, which is the preferred way when creating

a set of HTML to be hosted on a web server.

However, this can be a hindrance when browsing the documentation locally as browsers do not

resolve directory URLs like foo/ to foo/index.html for local files. You have two options:

1. You can run a local web server out of the docs/build directory. One way to accomplish

this is to install the LiveServer Julia package. You can then start the server with julia

-e 'using LiveServer; serve(dir="docs/build")'. Alternatively, if you have Python

installed, you can start one with python3 -m http.server --bind localhost (or python

-m SimpleHTTPServer with Python 2).

2. You can disable the pretty URLs feature by passing prettyurls = falsewith the Documenter.HTML

plugin:

makedocs(..., format = Documenter.HTML(prettyurls = false))

Alternatively, if your goal is to eventually set up automatic documentation deployment with

e.g. Travis CI or GitHub Actions (see Hosting Documentation), you can also use their envi-

ronment variables to determine Documenter's behavior in make.jl on the fly:

makedocs(...,

format = Documenter.HTML(

prettyurls = get(ENV, "CI", nothing) == "true"

)

)

Warning

Never git commit the contents of build (or any other content generated by Documenter) to

your repository's master branch. Always commit generated files to the gh-pages branch of your

repository. This helps to avoid including unnecessary changes for anyone reviewing commits that

happen to include documentation changes.

See the Hosting Documentation section for details regarding how you should go about setting this

up correctly.

At this point build/index.html should be an empty page since src/index.md is empty. You can try adding

some text to src/index.md and re-running the make.jl file to see the changes.

https://github.com/tlienart/LiveServer.jl

CHAPTER 2. GUIDE 8

Adding Some Docstrings

Next we'll splice a docstring defined in the Example module into the index.md file. To do this first document a

function in that module:

module Example

export func

"""

func(x)

Returns double the number `x` plus `1`.

"""

func(x) = 2x + 1

end

Then in the src/index.md file add the following

Example.jl Documentation

```@docs

func(x)

```

When we next run make.jl the docstring for Example.func(x) should appear in place of the @docs block in

build/index.md. Note that more than one object can be referenced inside a @docs block – just place each one

on a separate line.

Note that a @docs block is evaluated in the Main module. This means that each object listed in the block must

be visible there. The module can be changed to something else on a per-page basis with a @meta block as in

the following

Example.jl Documentation

```@meta

CurrentModule = Example

```

```@docs

func(x)

```

Filtering included docstrings

In some cases you may want to include a docstring for a Method that extends a Function from a different

module – such as Base. In the following example we extend Base.length with a new definition for the struct

T and also add a docstring:

struct T

...

end

"""

CHAPTER 2. GUIDE 9

Custom `length` docs for `T`.

"""

Base.length(::T) = 1

When trying to include this docstring with

```@docs

length

```

all the docs for length will be included – even those from other modules. There are two ways to solve this

problem. Either include the type in the signature with

```@docs

length(::T)

```

or declare the specific modules that makedocs should include with

makedocs(

options

modules = [MyModule]

)

Cross Referencing

It may be necessary to refer to a particular docstring or section of your document from elsewhere in the

document. To do this we can make use of Documenter's cross-referencing syntax which looks pretty similar to

normal markdown link syntax. Replace the contents of src/index.md with the following

Example.jl Documentation

```@docs

func(x)

```

- link to [Example.jl Documentation](@ref)

- link to [`func(x)`](@ref)

So we just have to replace each link's url with @ref and write the name of the thing we'd link to cross-reference.

For document headers it's just plain text that matches the name of the header and for docstrings enclose the

object in backticks.

This also works across different pages in the same way. Note that these sections and docstrings must be unique

within a document.

Navigation

Documenter can auto-generate tables of contents and docstring indexes for your document with the following

syntax. We'll illustrate these features using our index.md file from the previous sections. Add the following to

that file

Example.jl Documentation

```@contents

```


CHAPTER 2. GUIDE 10

Functions

```@docs

func(x)

```

Index

```@index

```

The @contents block will generate a nested list of links to all the section headers in the document. By default

it will gather all the level 1 and 2 headers from every page in the document, but this can be adjusted using

Pages and Depth settings as in the following

```@contents

Pages = ["foo.md", "bar.md"]

Depth = 3

```

The @index block will generate a flat list of links to all the docs that that have been spliced into the document

using @docs blocks. As with the @contents block the pages to be included can be set with a Pages = [...]

line. Since the list is not nested Depth is not supported for @index.

Pages in the Sidebar

By default all the pages (.md files) in your source directory get added to the sidebar, sorted by their filenames.

However, in most cases you want to use the pages argument to makedocs to control how the sidebar looks

like. The basic usage is as follows:

makedocs(

...,

pages = [

"page.md",

"Page title" => "page2.md",

"Subsection" => [

...

]

]

)

Using the pages argument you can organize your pages into subsections and hide some pages from the sidebar

with the help of the hide functions.

Adding a logo or icon

You can easily add a logo or icon to your documentation which will be automatically displayed in the navigation

sidebar.

During the build process, Documenter looks for suitable graphic images in the src/assets/ directory and

automatically copies them to /build/assets/.

You can use SVG, PNG, WEBP, GIF, or JPEG images.

CHAPTER 2. GUIDE 11

Documenter looks for files logo.svg, logo.png, logo.webp, logo.gif, logo.jpg, or logo.jpeg, in that order.

The first suitable image found is used.

This image will be used for both light and dark themes. If you want to create a separate design for the dark

theme, add a file called logo-dark.svg (or PNG/WEBP/GIF/JPEG).

Files don't need to be square. Images with transparent backgrounds can look better, particularly for dark

themes.

There's a sidebar_sitename keyword option for Documenter.HTML that lets you hide the sitename that's usu-

ally displayed below a logo. This is useful if the logo already contains the name.

Chapter 3

Examples

Sometimes the best way to learn how to use a new package is to look for examples of what others have already

built with it.

The following packages use Documenter to build their documentation and so should give a good overview of

what this package is currently able to do.

Note

Packages are listed alphabetically. If you have a package that uses Documenter then please

open a PR that adds it to the appropriate list below; a simple way to do so is to navigate to

https://github.com/JuliaDocs/Documenter.jl/edit/master/docs/src/man/examples.md.

The make.jl file for all listed packages will be tested to check for potential regressions prior to

tagging new Documenter releases whenever possible.

3.1 Registered

Packages that have tagged versions available in the general Registry:

• Augmentor.jl

• BanditOpt.jl

• BeaData.jl

• Bio.jl

• ControlSystems.jl

• COSMO.jl

• DiscretePredictors.jl

• Documenter.jl

• DrWatson

• EvolvingGraphs.jl

• ExtractMacro.jl

• EzXML.jl

12

https://github.com/JuliaDocs/Documenter.jl/edit/master/docs/src/man/examples.md
https://evizero.github.io/Augmentor.jl/
https://v-i-s-h.github.io/BanditOpt.jl/stable/
https://stephenbnicar.github.io/BeaData.jl/stable/
https://biojulia.net/Bio.jl/stable/
https://juliacontrol.github.io/ControlSystems.jl/stable/
https://oxfordcontrol.github.io/COSMO.jl/stable/
https://github.com/v-i-s-h/DiscretePredictors.jl
https://juliadocs.github.io/Documenter.jl/stable/
https://juliadynamics.github.io/DrWatson.jl/stable/
https://etymoio.github.io/EvolvingGraphs.jl/stable/
https://carlobaldassi.github.io/ExtractMacro.jl/stable/
https://juliaio.github.io/EzXML.jl/stable/

CHAPTER 3. EXAMPLES 13

• FourierFlows.jl

• Gadfly.jl

• GeoStats.jl

• Highlights.jl

• Luxor.jl

• MergedMethods.jl

• Mimi.jl

• NumericSuffixes.jl

• NLOptControl.jl

• OhMyREPL.jl

• OnlineStats.jl

• POMDPs.jl

• PhyloNetworks.jl

• PrivateModules.jl

• Query.jl

• TaylorSeries.jl

• Weave.jl

3.2 Documentation repositories

Some projects or organizations maintain dedicated documentation repositories that are separate from specific

packages.

• DifferentialEquations.jl

• JuliaDocs landing page

• JuliaImages

• JuliaMusic

• Plots.jl

https://fourierflows.github.io/FourierFlowsDocumentation/stable/
https://gadflyjl.org/stable/
https://juliaearth.github.io/GeoStats.jl/stable/
https://juliadocs.github.io/Highlights.jl/stable/
https://juliagraphics.github.io/Luxor.jl/stable/
https://michaelhatherly.github.io/MergedMethods.jl/stable/
https://www.mimiframework.org/Mimi.jl/stable/
https://michaelhatherly.github.io/NumericSuffixes.jl/stable/
https://huckl3b3rry87.github.io/MPCDocs.jl/stable/
https://github.com/KristofferC/OhMyREPL.jl
https://joshday.github.io/OnlineStats.jl/stable/
https://juliapomdp.github.io/POMDPs.jl/stable/
https://crsl4.github.io/PhyloNetworks.jl/stable/
https://michaelhatherly.github.io/PrivateModules.jl/stable/
https://www.queryverse.org/Query.jl/stable/
https://www.juliadiff.org/TaylorSeries.jl/stable/
https://weavejl.mpastell.com/stable/
https://diffeq.sciml.ai/dev/
https://juliadocs.github.io/dev/
https://juliaimages.org
https://juliamusic.github.io/JuliaMusic_documentation.jl/dev/
https://docs.juliaplots.org/dev/

Chapter 4

Syntax

This section of the manual describes the syntax used by Documenter to build documentation. For supported

Markdown syntax, see the documentation for the Markdown standard library in the Julia manual.

• Syntax

– @docs block

– @autodocs block

– @ref link

– @meta block

– @index block

– @contents block

– @example block

– @repl block

– @setup <name> block

– @eval block

– @raw <format> block

4.1 @docs block

Splice one or more docstrings into a document in place of the code block, i.e.

```@docs

Documenter

makedocs

deploydocs

```

This block type is evaluated within the CurrentModule module if defined, otherwise within Main, and so each

object listed in the block should be visible from that module. Undefined objects will raise warnings during

documentation generation and cause the code block to be rendered in the final document unchanged.

Objects may not be listed more than once within the document. When duplicate objects are detected an error

will be raised and the build process will be terminated.

To ensure that all docstrings from a module are included in the final document the modules keyword for

makedocs can be set to the desired module or modules, i.e.

14

https://docs.julialang.org/en/v1/stdlib/Markdown/

CHAPTER 4. SYNTAX 15

makedocs(

modules = [Documenter],

)

which will cause any unlisted docstrings to raise warnings when makedocs is called. If modules is not defined

then no warnings are printed, even if a document has missing docstrings.

Notice also that you can use @docs to display the documentation strings of only specific methods, by stating

the dispatch types. For example

```@docs

f(::Type1, ::Type2)

```

will only display the documentation string of f that is related to these types. This can be useful when your

module extends a function and adds a documentation string to that new method.

Note that when specifying signatures, it shouldmatch themethod definition exactly. Documenter will notmatch

methods based on dispatch rules. For example, assuming you have a docstring attached to foo(::Integer)

= ..., then neither foo(::Number) nor foo(::Int64) will match it in an at-docs block (even though Int64

<: Integer <: Number). The only way you can splice that docstring is by listing exactly foo(::Integer) in

the at-docs block.

4.2 @autodocs block

Automatically splices all docstrings from the provided modules in place of the code block. This is equivalent

to manually adding all the docstrings in a @docs block.

```@autodocs

Modules = [Foo, Bar]

Order = [:function, :type]

```

The above @autodocs block adds all the docstrings found in modules Foo and Bar that refer to functions or

types to the document.

Each module is added in order and so all docs from Foo will appear before those of Bar. Possible values for the

Order vector are

• :module

• :constant

• :type

• :function

• :macro

If no Order is provided then the order listed above is used.

When a potential docstring is found in one of the listed modules, but does not match any value from Order

then it will be omitted from the document. Hence Order acts as a basic filter as well as sorter.

In addition to Order, a Pages vector may be included in @autodocs to filter docstrings based on the source file

in which they are defined:

CHAPTER 4. SYNTAX 16

```@autodocs

Modules = [Foo]

Pages = ["a.jl", "b.jl"]

```

In the above example docstrings from module Foo found in source files that end in a.jl and b.jl are included.

The page order provided by Pages is also used to sort the docstrings. Note that page matching is done using

the end of the provided strings and so a.jl will be matched by any source file that ends in a.jl, i.e. src/a.jl

or src/foo/a.jl.

To filter out certain docstrings by your own criteria, you can provide function with the Filter keyword:

```@autodocs

Modules = [Foo]

Filter = t -> typeof(t) === DataType && t <: Foo.C

```

In the given example, only the docstrings of the subtypes of Foo.C are shown. Instead of an anonymous

function you can give the name of a function you defined beforehand, too:

```@autodocs

Modules = [Foo]

Filter = myCustomFilterFunction

```

To include only the exported names from the modules listed in Modules use Private = false. In a similar

way Public = false can be used to only show the unexported names. By default both of these are set to

true so that all names will be shown.

Functions exported from `Foo`:

```@autodocs

Modules = [Foo]

Private = false

Order = [:function]

```

Private types in module `Foo`:

```@autodocs

Modules = [Foo]

Public = false

Order = [:type]

```

Note

When more complex sorting is needed then use @docs to define it explicitly.

4.3 @ref link

Used in markdown links as the URL to tell Documenter to generate a cross-reference automatically. The text

part of the link can be a docstring, header name, or GitHub PR/Issue number.

Syntax

https://docs.julialang.org/en/v1/manual/functions/index.html#man-anonymous-functions-1
https://docs.julialang.org/en/v1/manual/functions/index.html#man-anonymous-functions-1

CHAPTER 4. SYNTAX 17

... [`makedocs`](@ref) ...

Functions

```@docs

makedocs

```

... [Syntax](@ref) ...

... [#42](@ref) ...

Plain text in the "text" part of a link will either cross-reference a header, or, when it is a number preceded by a

#, a GitHub issue/pull request. Text wrapped in backticks will cross-reference a docstring from a @docs block.

@refs may refer to docstrings or headers on different pages as well as the current page using the same syntax.

Note that depending on what the CurrentModule is set to, a docstring @ref may need to be prefixed by the

module which defines it.

Duplicate Headers

In some cases a document may contain multiple headers with the same name, but on different pages or of

different levels. To allow @ref to cross-reference a duplicate header it must be given a name as in the following

example

[Header](@id my_custom_header_name)

...

Header

... [Custom Header](@ref my_custom_header_name) ...

The link that wraps the named header is removed in the final document. The text for a named @ref ... does

not need to match the header that it references. Named @ref ...s may refer to headers on different pages

in the same way as unnamed ones do.

Duplicate docstring references do not occur since splicing the same docstring into a document more than once

is disallowed.

Named doc @refs

Docstring @refs can also be "named" in a similar way to headers as shown in the Duplicate Headers section

above. For example

module Mod

"""

Both of the following references point to `g` found in module `Main.Other`:

* [`Main.Other.g`](@ref)

* [`g`](@ref Main.Other.g)

"""

f(args...) = # ...

CHAPTER 4. SYNTAX 18

end

This can be useful to avoid having to write fully qualified names for references that are not imported into the

current module, or when the text displayed in the link is used to add additional meaning to the surrounding

text, such as

Use [`for i = 1:10 ...`](@ref for) to loop over all the numbers from 1 to 10.

Note

Named doc @refs should be used sparingly since writing unqualified names may, in some cases,

make it difficult to tell which function is being referred to in a particular docstring if there happen

to be several modules that provide definitions with the same name.

4.4 @meta block

This block type is used to define metadata key/value pairs that can be used elsewhere in the page. Currently

recognised keys:

• CurrentModule: module where Documenter evaluates, for example, @docs-block and @ref-links.

• DocTestSetup: code to be evaluated before a doctest, see the Setup Code section under Doctests.

• DocTestFilters: filters to deal with, for example, unpredictable output from doctests, see the Filtering

Doctests section under Doctests.

• EditURL: link to where the page can be edited. This defaults to the .md page itself, but if the source is

something else (for example if the .md page is generated as part of the doc build) this can be set, either

as a local link, or an absolute url.

Example:

```@meta

CurrentModule = FooBar

DocTestSetup = quote

using MyPackage

end

DocTestFilters = [r"Stacktrace:[\s\S]+"]

EditURL = "link/to/source/file"

```

Note that @meta blocks are always evaluated in Main.

4.5 @index block

Generates a list of links to docstrings that have been spliced into a document. Valid settings are Pages,

Modules, and Order. For example:

```@index

Pages = ["foo.md"]

Modules = [Foo, Bar]

Order = [:function, :type]

```


CHAPTER 4. SYNTAX 19

When Pages or Modules are not provided then all pages or modules are included. Order defaults to

[:module, :constant, :type, :function, :macro]

if not specified. Order and Modules behave the same way as in @autodocs blocks and filter out docstrings that

do not match one of the modules or categories specified.

Note that the values assigned to Pages, Modules, and Order may be any valid Julia code and thus can be

something more complex that an array literal if required, i.e.

```@index

Pages = map(file -> joinpath("man", file), readdir("man"))

```

It should be noted though that in this case Pages may not be sorted in the order that is expected by the user.

Try to stick to array literals as much as possible.

4.6 @contents block

Generates a nested list of links to document sections. Valid settings are Pages and Depth.

```@contents

Pages = ["foo.md"]

Depth = 5

```

As with @index if Pages is not provided then all pages are included. The default Depth value is 2.

4.7 @example block

Evaluates the code block and inserts the result of the last expression into the final document along with the

original source code. If the last expression returns nothing, the stdout and stderr streams of the whole block

are inserted instead. A semicolon ; at the end of the last line has no effect.

```@example

a = 1

b = 2

a + b

```

The above @example block will splice the following into the final document

```julia

a = 1

b = 2

a + b

```

```

3

```

Leading and trailing newlines are removed from the rendered code blocks. Trailing whitespace on each line is

also removed.

CHAPTER 4. SYNTAX 20

Note

The working directory, pwd, is set to the directory in build where the file will be written to, and

the paths in include calls are interpreted to be relative to pwd. This can be customized with the

workdir keyword of makedocs.

Hiding Source Code

Code blocks may have some content that does not need to be displayed in the final document. # hide com-

ments can be appended to lines that should not be rendered, i.e.

```@example

import Random # hide

Random.seed!(1) # hide

A = rand(3, 3)

b = [1, 2, 3]

A \ b

```

Note that appending # hide to every line in an @example block will result in the block being hidden in the

rendered document. The results block will still be rendered though. @setup blocks are a convenient shorthand

for hiding an entire block, including the output.

Empty Outputs

When an @example block returns nothing, the results block will show instead the stdout and stderr streams

produced by the whole block. If these are empty, the results block is not displayed at all; only the source code

block will be shown in the rendered document.

Named @example Blocks

By default @example blocks are run in their own anonymous Modules to avoid side-effects between blocks. To

share the same module between different blocks on a page the @example can be named with the following

syntax

```@example 1

a = 1

```

```@example 1

println(a)

```

The name can be any text, not just integers as in the example above, i.e. @example foo.

Named @example blocks can be useful when generating documentation that requires intermediate explanation

or multimedia such as plots as illustrated in the following example

First we define some functions

```@example 1

using PyPlot # hide

f(x) = sin(2x) + 1

g(x) = cos(x) - x

```

and then we plot `f` over the interval from π``-`` to π````

```@example 1



CHAPTER 4. SYNTAX 21

x = linspaceπ(-, π)

plot(x, f(x), color = "red")

savefig("f-plot.svg"); nothing # hide

```


and then we do the same with `g`

```@example 1

plot(x, g(x), color = "blue")

savefig("g-plot.svg"); nothing # hide

```


Note that @example blocks are evaluated within the directory of build where the file will be rendered . This

means than in the above example savefig will output the .svg files into that directory. This allows the images

to be easily referenced without needing to worry about relative paths.

@example blocks automatically define answhich, as in the Julia REPL, is bound to the value of the last evaluated

expression. This can be useful in situations such as the following one where where binding the object returned

by plot to a named variable would look out of place in the final rendered documentation:

```@example

using Gadfly # hide

plot([sin, x -> 2sin(x) + x], π-2, π2)

draw(SVG("plot.svg", 6inch, 4inch), ans); nothing # hide

```


Delayed Execution of @example Blocks

@example blocks accept a keyword argument continued which can be set to true or false (defaults to false).

When continued = true the execution of the code is delayed until the next continued = false @example-

block. This is needed for example when the expression in a block is not complete. Example:

```@example half-loop; continued = true

for i in 1:3

j = i^2

```

Some text explaining what we should do with `j`

```@example half-loop

println(j)

end

```

Here the first block is not complete – the loop is missing the end. Thus, by setting continued = true here we

delay the evaluation of the first block, until we reach the second block. A block with continued = true does

not have any output.

4.8 @repl block

These are similar to @example blocks, but add a julia> prompt before each toplevel expression. The # hide

syntax may be used in @repl blocks in the same way as in @example blocks. Furthermore, a semicolon ; at

the end of a line will suppress the output as in the Julia REPL.

CHAPTER 4. SYNTAX 22

```@repl

a = 1

b = 2

a + b

```

will generate

```julia

julia> a = 1

1

julia> b = 2

2

julia> a + b

3

```

Named @repl <name> blocks behave in the same way as named @example <name> blocks.

Note

The working directory, pwd, is set to the directory in build where the file will be written to, and

the paths in include calls are interpreted to be relative to pwd. This can be customized with the

workdir keyword of makedocs.

Soft vs hard scope

Julia 1.5 changed the REPL to use the soft scope when handling global variables in for loops etc.

When using Documenter with Julia 1.5 or above, Documenter uses the soft scope in @repl-blocks

and REPL-type doctests.

4.9 @setup <name> block

These are similar to @example blocks, but both the input and output are hidden from the final document. This

can be convenient if there are several lines of setup code that need to be hidden.

Note

Unlike @example and @repl blocks, @setup requires a <name> attribute to associate it with down-

stream @example <name> and @repl <name> blocks.

```@setup abc

using RDatasets

using DataFrames

iris = dataset("datasets", "iris")

```

```@example abc

println(iris)

```


CHAPTER 4. SYNTAX 23

4.10 @eval block

Evaluates the contents of the block and inserts the resulting value into the final document.

In the following example we use the PyPlot package to generate a plot and display it in the final document.

```@eval

using PyPlot

x = linspaceπ(-, π)

y = sin(x)

plot(x, y, color = "red")

savefig("plot.svg")

nothing

```


Another example is to generate markdown tables from machine readable data formats such as CSV or JSON.

```@eval

using CSV

using Latexify

df = CSV.read("table.csv")

mdtable(df,latex=false)

```

Which will generate a markdown version of the CSV file table.csv and render it in the output format.

Note that each @eval block evaluates its contents within a separate module. When evaluating each block the

present working directory, pwd, is set to the directory in build where the file will be written to, and the paths

in include calls are interpreted to be relative to pwd.

Also, instead of returning nothing in the example above we could have returned a new Markdown.MD object

through Markdown.parse. This can be more appropriate when the filename is not known until evaluation of

the block itself.

Note

In most cases @example is preferred over @eval. Just like in normal Julia code where eval should

be only be considered as a last resort, @eval should be treated in the same way.

4.11 @raw <format> block

Allows code to be inserted into the final document verbatim. E.g. to insert custom HTML or LaTeX code into

the output.

The format argument is mandatory and Documenter uses it to determine whether a particular block should

be copied over to the output or not. Currently supported formats are html and latex, used by the respective

writers. A @raw block whose format is not recognized is usually ignored, so it is possible to have a raw block

for each output format without the blocks being duplicated in the output.

The following example shows how SVG code with custom styling can be included into documents using the

@raw block.

CHAPTER 4. SYNTAX 24

```@raw html

<svg style="display: block; margin: 0 auto;" width="5em" heigth="5em">

<circle cx="2.5em" cy="2.5em" r="2em" stroke="black" stroke-width=".1em" fill="red" />

</svg>

```

It will show up as follows, with code having been copied over verbatim to the HTML file.

Chapter 5

Doctests

Documenter will, by default, run jldoctest code blocks that it finds and makes sure that the actual output

matches what's in the doctest. This can help to avoid documentation examples from becoming outdated, in-

correct, or misleading. It is recommended that as many of a package's examples be runnable by Documenter's

doctest.

This section of the manual outlines how to go about enabling doctests for code blocks in your package's

documentation.

5.1 "Script" Examples

The first, of two, types of doctests is the "script" code block. To make Documenter detect this kind of code

block the following format must be used:

```jldoctest

a = 1

b = 2

a + b

# output

3

```

The code block's "language" must be jldoctest and must include a line containing exactly the text # output.

The text before this line is the contents of the script that is run. The text that appears after # output is the

textual representation that would be shown in the Julia REPL if the script had been included. In particular,

semicolons ; at the end of a line have no effect.

The actual output produced by running the "script" is compared to the expected result and any difference will

result in makedocs throwing an error and terminating.

Note that the amount of whitespace appearing above and below the # output line is not significant and can

be increased or decreased if desired.

It is possible to suppress the output from the doctest by setting the output keyword argument to false, for

example

```jldoctest; output = false

a = 1

b = 2

a + b

25



CHAPTER 5. DOCTESTS 26

# output

3

```

Note that the output of the script will still be compared to the expected result, i.e. what is # output section,

but the # output section will be suppressed in the rendered documentation.

5.2 REPL Examples

The other kind of doctest is a simulated Julia REPL session. The following format is detected by Documenter

as a REPL doctest:

```jldoctest

julia> a = 1

1

julia> b = 2;

julia> c = 3; # comment

julia> a + b + c

6

```

As with script doctests, the code block must have it's language set to jldoctest. When a code block contains

one or more julia> at the start of a line then it is assumed to be a REPL doctest. Semi-colons, ;, at the end of a

line works in the same way as in the Julia REPL and will suppress the output, although the line is still evaluated.

Note that not all features of the REPL are supported such as shell and help modes.

Soft vs hard scope

Julia 1.5 changed the REPL to use the soft scope when handling global variables in for loops etc.

When using Documenter with Julia 1.5 or above, Documenter uses the soft scope in @repl-blocks

and REPL-type doctests.

5.3 Exceptions

Doctests can also test for thrown exceptions and their stacktraces. Comparing of the actual and expected

results is done by checking whether the expected result matches the start of the actual result. Hence, both of

the following errors will match the actual result.

```jldoctest

julia> div(1, 0)

ERROR: DivideError: integer division error

in div(::Int64, ::Int64) at ./int.jl:115

julia> div(1, 0)

ERROR: DivideError: integer division error

```

If instead the first div(1, 0) error was written as

CHAPTER 5. DOCTESTS 27

```jldoctest

julia> div(1, 0)

ERROR: DivideError: integer division error

in div(::Int64, ::Int64) at ./int.jl:114

```

where line 115 is replaced with 114 then the doctest will fail.

In the second div(1, 0), where no stacktrace is shown, it may appear to the reader that it is expected that no

stacktrace will actually be displayed when they attempt to try to recreate the error themselves. To indicate to

readers that the output result is truncated and does not display the entire (or any of) the stacktrace you may

write [...] at the line where checking should stop, i.e.

```jldoctest

julia> div(1, 0)

ERROR: DivideError: integer division error

[...]

```

5.4 Preserving Definitions Between Blocks

Every doctest block is evaluated inside its own module. This means that definitions (types, variables, functions

etc.) from a block can not be used in the next block. For example:

```jldoctest

julia> foo = 42

42

```

The variable foo will not be defined in the next block:

```jldoctest

julia> println(foo)

ERROR: UndefVarError: foo not defined

```

To preserve definitions it is possible to label blocks in order to collect several blocks into the same module. All

blocks with the same label (in the same file) will be evaluated in the same module, and hence share scope.

This can be useful if the same definitions are used in more than one block, with for example text, or other

doctest blocks, in between. Example:

```jldoctest mylabel

julia> foo = 42

42

```

Now, since the block below has the same label as the block above, the variable foo can be used:

```jldoctest mylabel

julia> println(foo)

42

```

Note

Labeled doctest blocks do not need to be consecutive (as in the example above) to be included

in the same module. They can be interspaced with unlabeled blocks or blocks with another label.

CHAPTER 5. DOCTESTS 28

5.5 Setup Code

Doctests may require some setup code that must be evaluated prior to that of the actual example, but that

should not be displayed in the final documentation. There are three ways to specify the setup code, each

appropriate in a different situation.

DocTestSetup in @meta blocks

For doctests in the Markdown source files, an @meta block containing a DocTestSetup = ... value can be

used. In the example below, the function foo is defined inside a @meta block. This block will be evaluated at

the start of the following doctest blocks:

```@meta

DocTestSetup = quote

function foo(x)

return x^2

end

end

```

```jldoctest

julia> foo(2)

4

```

```@meta

DocTestSetup = nothing

```

The DocTestSetup = nothing is not strictly necessary, but good practice nonetheless to help avoid uninten-

tional definitions in following doctest blocks.

While technically the @meta blocks also work within docstrings, their use there is discouraged since the @meta

blocks will show up when querying docstrings in the REPL.

Historic note

It used to be that DocTestSetups in @meta blocks in Markdown files that included docstrings also

affected the doctests in the docstrings. Since Documenter 0.23 that is no longer the case. You

should use Module-level metadata or Block-level setup code instead.

Module-level metadata

For doctests that are in docstrings, the exported DocMeta module provides an API to attach metadata that

applies to all the docstrings in a particular module. Setting up the DocTestSetup metadata should be done

before the makedocs or doctest call:

using MyPackage, Documenter

DocMeta.setdocmeta!(MyPackage, :DocTestSetup, :(using MyPackage); recursive=true)

makedocs(modules=[MyPackage], ...)

Note

Make sure to include all (top-level) modules that contain docstrings with doctests in the modules

argument to makedocs. Otherwise these doctests will not be run.

CHAPTER 5. DOCTESTS 29

Block-level setup code

Yet another option is to use the setup keyword argument to the jldoctest block, which is convenient for short

definitions, and for setups needed in inline docstrings.

```jldoctest; setup = :(foo(x) = x^2)

julia> foo(2)

4

```

Note

The DocTestSetup and the setup values are re-evaluated at the start of each doctest block and

no state is shared between any code blocks. To preserve definitions see Preserving Definitions

Between Blocks.

5.6 Filtering Doctests

A part of the output of a doctest might be non-deterministic, e.g. pointer addresses and timings. It is therefore

possible to filter a doctest so that the deterministic part can still be tested.

A filter takes the form of a regular expression. In a doctest, each match in the expected output and the actual

output is removed before the two outputs are compared. Filters are added globally, i.e. applied to all doctests

in the documentation, by passing a list of regular expressions to makedocs with the keyword doctestfilters.

Formore fine grained control it is possible to define filters in @meta blocks by assigning them to the DocTestFilters

variable, either as a single regular expression (DocTestFilters = [r"foo"]) or as a vector of several regex

(DocTestFilters = [r"foo", r"bar"]).

An example is given below where some of the non-deterministic output from @time is filtered.

```@meta

DocTestFilters = r"[0-9\.]+ seconds \(.*\)"

```

```jldoctest

julia> @time [1,2,3,4]

0.000003 seconds (5 allocations: 272 bytes)

4-element Array{Int64,1}:

1

2

3

4

```

```@meta

DocTestFilters = nothing

```

The DocTestFilters = nothing is not strictly necessary, but good practice nonetheless to help avoid unin-

tentional filtering in following doctest blocks.

Another option is to use the filter keyword argument. This defines a doctest-local filter which is only active

for the specific doctest. Note that such filters are not shared between named doctests either. It is possible to

define a filter by a single regex (filter = r"foo") or as a list of regex (filter = [r"foo", r"bar"]). Example:

CHAPTER 5. DOCTESTS 30

```jldoctest; filter = r"[0-9\.]+ seconds \(.*\)"

julia> @time [1,2,3,4]

0.000003 seconds (5 allocations: 272 bytes)

4-element Array{Int64,1}:

1

2

3

4

```

Note

The global filters, filters defined in @meta blocks, and filters defined with the filter keyword

argument are all applied to each doctest.

5.7 Doctesting as Part of Testing

Documenter provides the doctest function which can be used to verify all doctests independently of manual

builds. It behaves like a @testset, so it will return a testset if all the tests pass or throw a TestSetException

if it does not.

For example, it can be used to verify doctests as part of the normal test suite by having e.g. the following in

runtests.jl:

using Test, Documenter, MyPackage

doctest(MyPackage)

By default, it will also attempt to verify all the doctests on manual .md files, which it assumes are located under

docs/src. This can be configured or disabled with the manual keyword (see doctest for more information).

It can also be included in another testset, in which case it gets incorporated into the parent testset. So, as

another example, to test a package that does have separate manual pages, just docstrings, and also collects

all the tests into a single testset, the runtests.jl might look as follows:

using Test, Documenter, MyPackage

@testset "MyPackage" begin

... # other tests & testsets

doctest(MyPackage; manual = false)

... # other tests & testsets

end

Note that you still need to make sure that all the necessary Module-level metadata for the doctests is set up

before doctest is called. Also, you need to add Documenter and all the other packages you are loading in the

doctests as test dependencies.

5.8 Fixing Outdated Doctests

To fix outdated doctests, the doctest function can be called with fix = true. This will run the doctests, and

overwrite the old results with the new output. This can be done just in the REPL:

julia> using Documenter, MyPackage

julia> doctest(MyPackage, fix=true)

CHAPTER 5. DOCTESTS 31

Alternatively, you can also pass the doctest = :fix keyword to makedocs.

Note

• The :fix option currently only works for LF line endings ('\n')

• It is recommended to git commit any code changes before running the doctest fixing. That

way it is simple to restore to the previous state if the fixing goes wrong.

• There are some corner cases where the fixing algorithmmay replace the wrong code snippet.

It is therefore recommended to manually inspect the result of the fixing before committing.

5.9 Skipping Doctests

Doctesting can be disabled by setting the makedocs keyword doctest = false. This should only be done

when initially laying out the structure of a package's documentation, after which it's encouraged to always run

doctests when building docs.

Chapter 6

LATEXSyntax

The following section describes how to add equations written using LATEXto your documentation.

6.1 Escaping Characters in Docstrings

Since some characters used in LATEXsyntax, such as $ and \, are treated differently in docstrings. They need to

be escaped using a \ character as in the following example:

"""

Here's some inline maths: ``\\sqrt[n]{1 + x + x^2 + \\ldots}``.

Here's an equation:

``\\frac{n!}{k!(n - k)!} = \\binom{n}{k}``

This is the binomial coefficient.

"""

func(x) = # ...

Note that for equations on the manual pages (in .md files) the escaping is not necessary. So, when moving

equations between the manual and docstrings, the escaping \ characters have to the appropriately added or

removed.

To avoid needing to escape the special characters in docstrings the raw"" string macro can be used, combined

with @doc:

@doc raw"""

Here's some inline maths: ``\sqrt[n]{1 + x + x^2 + \ldots}``.

Here's an equation:

``\frac{n!}{k!(n - k)!} = \binom{n}{k}``

This is the binomial coefficient.

"""

func(x) = # ...

A related issue is how to add dollar signs to a docstring. They need to be double-escaped as follows:

32

CHAPTER 6. LATEXSYNTAX 33

"""

The cost was \\\$1.

"""

6.2 Inline Equations

Here's some inline maths: ``\sqrt[n]{1 + x + x^2 + \ldots}``.

which will be displayed as

Here's some inline maths:
n
√
1 + x+ x2 +

6.3 Display Equations

Here's an equation:

```math

\frac{n!}{k!(n - k)!} = \binom{n}{k}

```

This is the binomial coefficient.

To write a system of equations, use the `aligned` environment:

```math

\begin{aligned}

\nabla\cdot\mathbf{E} &= 4 \pi \rho \\

\nabla\cdot\mathbf{B} &= 0 \\

\nabla\times\mathbf{E} &= - \frac{1}{c} \frac{\partial\mathbf{B}}{\partial t} \\

\nabla\times\mathbf{B} &= - \frac{1}{c} \left(4 \pi \mathbf{J} + \frac{\partial\mathbf{E}}{\partial

t} \right)

\end{aligned}

```

These are Maxwell's equations.

which will be displayed as

Here's an equation:

n!

k!(n− k)!
=

(
n

k

)
This is the binomial coefficient.

To write a system of equations, use the aligned environment:

CHAPTER 6. LATEXSYNTAX 34

∇ · E = 4πρ

∇ · B = 0

∇× E = −1

c

∂B
∂t

∇× B = −1

c

(
4πJ +

∂E
∂t

)
These are Maxwell's equations.

Chapter 7

Hosting Documentation

After going through the Package Guide and Doctests page you will need to host the generated documentation

somewhere for potential users to read. This guide will describe how to set up automatic updates for your

package docs using either the Travis CI build service or GitHub Actions together with GitHub Pages for hosting

the generated HTML files. This is the same approach used by this package to host its own docs – the docs

you're currently reading.

Note

Following this guide should be the final step you take after you are comfortable with the syntax

and build process used by Documenter.jl. It is recommended that you only proceed with the

steps outlined here once you have successfully managed to build your documentation locally with

Documenter.

This guide assumes that you already have GitHub and Travis accounts setup. If not then go set

those up first and then return here.

It is possible to deploy from other systems than Travis CI or GitHub Actions, see the section on

Deployment systems.

7.1 Overview

Once set up correctly, the following will happen each time you push new updates to your package repository:

• Buildbots will start up and run your package tests in a "Test" stage.

• After the Test stage completes, a single bot will run a new "Documentation" stage, which will build the

documentation.

• If the documentation is built successfully, the bot will attempt to push the generated HTML pages back

to GitHub.

Note that the hosted documentation does not update when you make pull requests; you see updates only

when you merge to master or push new tags.

In the upcoming sections we describe how to configure the build service to run the documentation build stage.

In general it is easiest to choose the same service as the one testing your package. If you don't explicitly select

the service with the deploy_config keyword argument to deploydocs Documenter will try to automatically

detect which system is running and use that.

35

https://github.com/
https://travis-ci.com/

CHAPTER 7. HOSTING DOCUMENTATION 36

7.2 Travis CI

To tell Travis that we want a new build stage, we can add the following to an existing .travis.yml file. Note

that the snippet below will not work by itself and must be accompanied by a complete Travis file.

jobs:

include:

- stage: "Documentation"

julia: 1.4

os: linux

script:

- julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd()));

Pkg.instantiate()'

- julia --project=docs/ docs/make.jl

after_success: skip

where the julia: and os: entries decide the worker from which the docs are built and deployed. In the

example above we will thus build and deploy the documentation from a linux worker running Julia 1.4. For

more information on how to setup a build stage, see the Travis manual for Build Stages.

The three lines in the script: section do the following:

1. Instantiate the doc-building environment (i.e. docs/Project.toml, see below).

2. Install your package in the doc-build environment.

3. Run the docs/make.jl script, which builds and deploys the documentation.

Note

If your package has a build script you should call Pkg.build("PackageName") after the call to

Pkg.develop to make sure the package is built properly.

matrix: section in .travis.yml

Travis CI used to use matrix: as the section to configure to build matrix in the config file. This

now appears to be a deprecated alias for jobs:. If you use both matrix: and jobs: in your

configuration, matrix: overrides the settings under jobs:.

If your .travis.yml file still uses matrix:, it should be replaced with a a single jobs: section.

Authentication: SSH Deploy Keys

In order to push the generated documentation from Travis you need to add deploy keys. Deploy keys provide

push access to a single repository, to allow secure deployment of generated documentation from the builder to

GitHub. The SSH keys can be generated with DocumenterTools.genkeys from the DocumenterTools package.

Note

You will need several command line programs (which, git and ssh-keygen) to be installed for the

following steps to work. If DocumenterTools fails, please see the the SSH Deploy Keys Walkthrough

section for instruction on how to generate the keys manually (including in Windows).

Install and load DocumenterTools with

pkg> add DocumenterTools

https://docs.travis-ci.com/user/build-stages
https://github.com/JuliaDocs/DocumenterTools.jl

CHAPTER 7. HOSTING DOCUMENTATION 37

julia> using DocumenterTools

Then call the DocumenterTools.genkeys function as follows:

julia> using MyPackage

julia> DocumenterTools.genkeys(user="MyUser", repo="git@github.com:MyUser/MyPackage.jl.git")

where MyPackage is the name of the package you would like to create deploy keys for and MyUser is your

GitHub username. Note that the keyword arguments are optional and can be omitted.

If the package is checked out in developmentmodewith] dev MyPackage, you can also use DocumenterTools.genkeys

as follows:

julia> using MyPackage

julia> DocumenterTools.genkeys(MyPackage)

where MyPackage is the package you would like to create deploy keys for. The output will look similar to the

text below:

[Info: add the public key below to https://github.com/USER/REPO/settings/keys

with read/write access:

[SSH PUBLIC KEY HERE]

[Info: add a secure environment variable named 'DOCUMENTER_KEY' to

https://travis-ci.com/USER/REPO/settings with value:

[LONG BASE64 ENCODED PRIVATE KEY]

Follow the instructions that are printed out, namely:

1. Add the public ssh key to your settings page for the GitHub repository that you are setting up by following

the .../settings/key link provided. Click on Add deploy key, enter the name documenter as the title,

and copy the public key into the Key field. Check Allow write access to allow Documenter to commit

the generated documentation to the repo.

2. Next add the long private key to the Travis settings page using the provided link. Again note that you

should include no whitespace when copying the key. In the Environment Variables section add a

key with the name DOCUMENTER_KEY and the value that was printed out. Do not set the variable to be

displayed in the build log. Then click Add.

Security warning

To reiterate: make sure that this key is hidden. In particular, in the Travis CI settings the

"Display value in build log" option should be OFF for the variable, so that it does not get

printed when the tests run. This base64-encoded string contains the unencrypted private

key that gives full write access to your repository, so it must be kept safe. Also, make sure

that you never expose this variable in your tests, nor merge any code that does. You can

read more about Travis environment variables in Travis User Documentation.

Note

There are more explicit instructions for adding the keys to Travis in the SSH Deploy Keys Walk-

through section of the manual.

https://docs.travis-ci.com/user/environment-variables/#Defining-Variables-in-Repository-Settings

CHAPTER 7. HOSTING DOCUMENTATION 38

7.3 GitHub Actions

To run the documentation build fromGitHub Actions you should add the following to your workflow configuration

file:

name: Documentation

on:

push:

branches:

- master

tags: '*'

pull_request:

jobs:

build:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v2

- uses: julia-actions/setup-julia@latest

with:

version: '1.4'

- name: Install dependencies

run: julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd())); Pkg.

instantiate()'

- name: Build and deploy

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} # If authenticating with GitHub Actions token

DOCUMENTER_KEY: ${{ secrets.DOCUMENTER_KEY }} # If authenticating with SSH deploy key

run: julia --project=docs/ docs/make.jl

which will install Julia, checkout the correct commit of your repository, and run the build of the documentation.

The julia-version:, julia-arch: and os: entries decide the environment from which the docs are built

and deployed. In the example above we will thus build and deploy the documentation from a ubuntu worker

running Julia 1.4. For more information on how to setup a GitHub workflow see the manual: Learn GitHub

Actions.

The commands in the lines in the run: section do the same as for Travis, see the previous section.

TagBot & tagged versions

In order to deploy documentation for tagged versions, the GitHub Actions workflow needs to be

triggered by the tag. However, by default, when the Julia TagBot uses just the GITHUB_TOKEN for

authentication, it does not have the permission to trigger any further workflows jobs, and so the

documentation CI job never runs for the tag.

To work around that, TagBot should be configured to use DOCUMENTER_KEY for authentication, by

adding ssh: ${{ secrets.DOCUMENTER_KEY }} to the with section. A complete TagBot workflow

file could look as follows:

name: TagBot

on:

schedule:

- cron: 0 0 * * *

jobs:

TagBot:

runs-on: ubuntu-latest

https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions
https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions
https://github.com/marketplace/actions/julia-tagbot
https://github.com/marketplace/actions/julia-tagbot#ssh-deploy-keys

CHAPTER 7. HOSTING DOCUMENTATION 39

steps:

- uses: JuliaRegistries/TagBot@v1

with:

token: ${{ secrets.GITHUB_TOKEN }}

ssh: ${{ secrets.DOCUMENTER_KEY }}

Authentication: GITHUB_TOKEN

When running from GitHub Actions it is possible to authenticate using the GitHub Actions authentication token

(GITHUB_TOKEN). This is done by adding

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

to the configuration file, as showed in the previous section.

Note

You can only use GITHUB_TOKEN for authentication if the target repository of the deployment is the

same as the current repository. In order to push elsewhere you should instead use a SSH deploy

key.

Authentication: SSH Deploy Keys

It is also possible to authenticate using a SSH deploy key, just as described in the SSH Deploy Keys section for

Travis CI. You can generate the key in the same way, and then set the encoded key as a secret environment

variable in your repository settings. You also need to make the key available for the doc building workflow by

adding

DOCUMENTER_KEY: ${{ secrets.DOCUMENTER_KEY }}

to the configuration file, as showed in the previous section. See GitHub's manual for Encrypted secrets for

more information.

Add code coverage from documentation builds

If you want code run during the documentation deployment to be covered by Codecov, you can edit the end of

the docs part of your workflow configuration file so that docs/make.jl is run with the --code-coverage=user

flag and the coverage reports are uploaded to Codecov:

- run: julia --project=docs/ --code-coverage=user docs/make.jl

env:

GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

DOCUMENTER_KEY: ${{ secrets.DOCUMENTER_KEY }}

- uses: julia-actions/julia-processcoverage@v1

- uses: codecov/codecov-action@v1

7.4 docs/Project.toml

The doc-build environment docs/Project.toml includes Documenter and other doc-build dependencies your

package might have. If Documenter is the only dependency, then the Project.toml should include the fol-

lowing:

https://docs.github.com/en/free-pro-team@latest/actions/reference/authentication-in-a-workflow
https://docs.github.com/en/free-pro-team@latest/actions/reference/authentication-in-a-workflow
https://docs.github.com/en/free-pro-team@latest/actions/reference/encrypted-secrets

CHAPTER 7. HOSTING DOCUMENTATION 40

[deps]

Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"

[compat]

Documenter = "0.26"

Note that it is recommended that you have a [compat] section, like the one above, in your Project.toml

file, which would restrict Documenter's version that gets installed when the build runs. This is to make sure

that your builds do not start failing suddenly due to a new major release of Documenter, which may include

breaking changes. However, it also means that you will not get updates to Documenter automatically, and

hence need to upgrade Documenter's major version yourself.

7.5 The deploydocs Function

At the moment your docs/make.jl file probably only contains

using Documenter, PACKAGE_NAME

makedocs()

We'll need to add an additional function call to this file after makedocs which would perform the deployment

of the docs to the gh-pages branch. Add the following at the end of the file:

deploydocs(

repo = "github.com/USER_NAME/PACKAGE_NAME.jl.git",

)

where USER_NAME and PACKAGE_NAMEmust be set to the appropriate names. Note that repo should not specify

any protocol, i.e. it should not begin with https:// or git@.

See the deploydocs function documentation for more details.

7.6 .gitignore

Add the following to your package's .gitignore file

docs/build/

These are needed to avoid committing generated content to your repository.

7.7 gh-pages Branch

By default, Documenter pushes documentation to the gh-pages branch. If the branch does not exist it will

be created automatically by deploydocs. If it does exist then Documenter simply adds an additional commit

with the built documentation. You should be aware that Documenter may overwrite existing content without

warning.

If you wish to create the gh-pages branch manually that can be done following these instructions.

You also need to make sure that you have "gh-pages branch" selected as the source of the GitHub Pages site

in your GitHub repository settings, so that GitHub would actually serve the contents as a website.

Cleaning up gh-pages. Note that the gh-pages branch can become very large, especially when push_preview

is enabled to build documentation for each pull request. To clean up the branch and remove stale documenta-

tion previews, a GitHub Actions workflow like the following can be used.

https://coderwall.com/p/0n3soa/create-a-disconnected-git-branch
https://docs.github.com/en/free-pro-team@latest/github/working-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site
https://docs.github.com/en/free-pro-team@latest/github/working-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site

CHAPTER 7. HOSTING DOCUMENTATION 41

name: Doc Preview Cleanup

on:

pull_request:

types: [closed]

jobs:

doc-preview-cleanup:

runs-on: ubuntu-latest

steps:

- name: Checkout gh-pages branch

uses: actions/checkout@v2

with:

ref: gh-pages

- name: Delete preview and history

run: |

git config user.name "Documenter.jl"

git config user.email "documenter@juliadocs.github.io"

git rm -rf "previews/PR$PRNUM"

git commit -m "delete preview"

git branch gh-pages-new $(echo "delete history" | git commit-tree HEAD^{tree})

env:

PRNUM: ${{ github.event.number }}

- name: Push changes

run: |

git push --force origin gh-pages-new:gh-pages

This workflow was taken from CliMA/TimeMachine.jl (Apache License 2.0).

7.8 Documentation Versions

The documentation is deployed as follows:

• Documentation built for a tag vX.Y.Z will be stored in a folder vX.Y.Z.

• Documentation built from the devbranch branch (master by default) is stored in a folder determined by

the devurl keyword to deploydocs (dev by default).

Which versions that will show up in the version selector is determined by the versions argument to deploydocs.

Unless a custom domain is being used, the pages are found at:

https://USER_NAME.github.io/PACKAGE_NAME.jl/vX.Y.Z

https://USER_NAME.github.io/PACKAGE_NAME.jl/dev

By default Documenter will create a link called stable that points to the latest release

https://USER_NAME.github.io/PACKAGE_NAME.jl/stable

It is recommended to use this link, rather than the versioned links, since it will be updated with new releases.

Fixing broken release deployments

https://github.com/CliMA/TimeMachine.jl/blob/4d951f814b5b25cd2d13fd7a9f9878e75d0089d1/.github/workflows/DocCleanup.yml

CHAPTER 7. HOSTING DOCUMENTATION 42

It can happen that, for one reason or another, the documentation for a tagged version of your

package fails to deploy and a fix would require changes to the source code (e.g. a misconfigured

make.jl). However, as registered tags should not be changed, you can not simply update the

original tag (e.g. v1.2.3) with the fix.

In this situation, you can manually create and push a tag for the commit with the fix that has

the same version number, but also some build metadata (e.g. v1.2.3+doc1). For Git, this is a

completely different tag, so it won't interfere with anything. But when Documenter runs on this

tag, it will ignore the build metadata and deploy the docs as if they were for version v1.2.3.

Note that, as with normal tag builds, you need to make sure that your CI that runs Documenter

is configured to run on such tags (e.g. that the regex constraining the branches the CI runs on is

broad enough etc).

Once your documentation has been pushed to the gh-pages branch you should add links to your README.md

pointing to the stable (and perhaps dev) documentation URLs. It is common practice to make use of "badges"

similar to those used for Travis and AppVeyor build statuses or code coverage. Adding the following to your

package README.md should be all that is necessary:

[](https://USER_NAME.github.io/PACKAGE_NAME.jl

/stable)

[](https://USER_NAME.github.io/PACKAGE_NAME.jl/

dev)

PACKAGE_NAME and USER_NAME should be replaced with their appropriate values. The colour and text of the

image can be changed by altering docs-stable-blue as described on shields.io, though it is recommended

that package authors follow this standard to make it easier for potential users to find documentation links

across multiple package README files.

Final Remarks

That should be all that is needed to enable automatic documentation building. Pushing new commits to your

master branch should trigger doc builds. Note that other branches do not trigger these builds and

neither do pull requests by potential contributors.

If you would like to see a more complete example of how this process is setup then take a look at this package's

repository for some inspiration.

7.9 Deployment systems

It is possible to customize Documenter to use other systems then the ones described in the sections above. This

is done by passing a configuration (a DeployConfig) to deploydocs by the deploy_config keyword argument.

Documenter supports Travis, GitHubActions, GitLab, and Buildkite natively, but it is easy to define your

own by following the simple interface described below.

Documenter.DeployConfig – Type.

DeployConfig

Abstract type which new deployment configs should be subtypes of.

source

Documenter.deploy_folder – Function.

Documenter.deploy_folder(cfg::DeployConfig; repo, devbranch, push_preview, devurl, kwargs...)

https://shields.io
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L3-L7

CHAPTER 7. HOSTING DOCUMENTATION 43

Return a DeployDecision. This function is called with the repo, devbranch, push_preview and devurl

arguments from deploydocs.

Note

Implementations of this functions should accept trailing kwargs... for compatibility with future

Documenter releases which may pass additional keyword arguments.

source

Documenter.DeployDecision – Type.

DeployDecision(; kwargs...)

Struct containing information about the decision to deploy or not deploy.

Arguments

• all_ok::Bool - Should documentation be deployed?

• branch::String - The branch to which documentation should be pushed

• is_preview::Bool - Is this documentation build a pull request?

• repo::String - The repo to which documentation should be pushed

• subfolder::String - The subfolder to which documentation should be pushed

source

Documenter.authentication_method – Function.

Documenter.authentication_method(::DeployConfig)

Return enum instance SSH or HTTPS depending on push method to be used.

Configs returning SSH should support Documenter.documenter_key. Configs returning HTTPS should sup-

port Documenter.authenticated_repo_url.

source

Documenter.authenticated_repo_url – Function.

Documenter.authenticated_repo_url(cfg::DeployConfig)

Return an authenticated URL to the upstream repository.

Thismethodmust be supported by configs that pushwith HTTPS, see Documenter.authentication_method.

source

Documenter.documenter_key – Function.

Documenter.documenter_key(cfg::DeployConfig)

Return the Base64-encoded SSH private key for the repository. Defaults to reading the DOCUMENTER_KEY

environment variable.

This method must be supported by configs that push with SSH, see Documenter.authentication_method.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L58-L69
https://github.com/JuliaLang/julia/blob/539f3ce943f59dec8aff3f2238b083f1b27f41e5/base/#L0-L12
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L81-L88
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L91-L98
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L31-L39

CHAPTER 7. HOSTING DOCUMENTATION 44

Documenter.documenter_key_previews – Function.

Documenter.documenter_key_previews(cfg::DeployConfig)

Return the Base64-encoded SSH private key for the repository. Uses the DOCUMENTER_KEY_PREVIEWS envi-

ronment variable if it is defined, otherwise uses the DOCUMENTER_KEY environment variable.

This method must be supported by configs that push with SSH, see Documenter.authentication_method.

source

Documenter.Travis – Type.

Travis <: DeployConfig

Default implementation of DeployConfig.

The following environment variables influences the build when using the Travis configuration:

• DOCUMENTER_KEY: must contain the Base64-encoded SSH private key for the repository. This variable

should be set in the Travis settings for the repository. Make sure this variable is marked NOT to be

displayed in the build log.

• TRAVIS_PULL_REQUEST: must be set to false. This avoids deployment on pull request builds.

• TRAVIS_REPO_SLUG: must match the value of the repo keyword to deploydocs.

• TRAVIS_EVENT_TYPE: may not be set to cron. This avoids re-deployment of existing docs on builds

that were triggered by a Travis cron job.

• TRAVIS_BRANCH: unless TRAVIS_TAG is non-empty, this must have the same value as the devbranch

keyword to deploydocs. This makes sure that only the development branch (commonly, the master

branch) will deploy the "dev" documentation (deployed into a directory specified by the devurl key-

word to deploydocs).

• TRAVIS_TAG: if set, a tagged version deployment is performed instead; the value must be a valid

version number (i.e. match Base.VERSION_REGEX). The documentation for a package version tag

gets deployed to a directory named after the version number in TRAVIS_TAG instead.

The TRAVIS_* variables are set automatically on Travis. More information on how Travis sets the TRAVIS_*

variables can be found in the Travis documentation.

source

Documenter.GitHubActions – Type.

GitHubActions <: DeployConfig

Implementation of DeployConfig for deploying from GitHub Actions.

The following environment variables influences the build when using the GitHubActions configuration:

• GITHUB_EVENT_NAME: must be set to push. This avoids deployment on pull request builds.

• GITHUB_REPOSITORY: must match the value of the repo keyword to deploydocs.

• GITHUB_REF: must match the devbranch keyword to deploydocs, alternatively correspond to a git

tag.

• GITHUB_TOKEN or DOCUMENTER_KEY: used for authentication with GitHub, see the manual section for

GitHub Actions for more information.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L44-L53
https://docs.travis-ci.com/user/environment-variables/#default-environment-variables
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L112-L145

CHAPTER 7. HOSTING DOCUMENTATION 45

The GITHUB_* variables are set automatically on GitHub Actions, see the documentation.

source

Documenter.GitLab – Type.

GitLab <: DeployConfig

GitLab implementation of DeployConfig.

The following environment variables influence the build when using the GitLab configuration:

• DOCUMENTER_KEY: must contain the Base64-encoded SSH private key for the repository. This variable

should be set in the GitLab settings. Make sure this variable is marked NOT to be displayed in the

build log.

• CI_COMMIT_BRANCH: the name of the commit branch.

• CI_EXTERNAL_PULL_REQUEST_IID: Pull Request ID from GitHub if the pipelines are for external pull

requests.

• CI_PROJECT_PATH_SLUG: The namespacewith project name. All letters lowercased and non-alphanumeric

characters replaced with -.

• CI_COMMIT_TAG: The commit tag name. Present only when building tags.

• CI_PIPELINE_SOURCE: Indicates how the pipeline was triggered.

The CI_* variables are set automatically on GitLab. More information on how GitLab sets the CI_* variables

can be found in the GitLab documentation.

source

Documenter.Buildkite – Type.

Buildkite <: DeployConfig

Buildkite implementation of DeployConfig.

The following environment variables influence the build when using the Buildkite configuration:

• DOCUMENTER_KEY: must contain the Base64-encoded SSH private key for the repository. This variable

should be somehow set in the CI environment, e.g., provisioned by an agent environment plugin.

• BUILDKITE_BRANCH: the name of the commit branch.

• BUILDKITE_PULL_REQUEST: Pull Request ID from GitHub if the pipelines are for external pull requests.

• BUILDKITE_TAG: The commit tag name. Present only when building tags.

The BUILDKITE_* variables are set automatically on GitLab. More information on how Buildkite sets the

BUILDKITE_* variables can be found in the Buildkite documentation.

source

7.10 SSH Deploy Keys Walkthrough

If the instructions in Authentication: SSH Deploy Keys did not work for you (for example, ssh-keygen is not

installed), don't worry! This walkthrough will guide you through the process. There are three main steps:

1. Generating an SSH Key

2. Adding the Public Key to GitHub

3. Adding the Private Key

https://docs.github.com/en/free-pro-team@latest/actions/reference/environment-variables#default-environment-variables
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L270-L291
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L508-L535
https://buildkite.com/docs/pipelines/environment-variables
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/deployconfig.jl#L662-L684

CHAPTER 7. HOSTING DOCUMENTATION 46

Generating an SSH Key

The first step is to generate an SSH key. An SSH key is made up of two components: a public key, which can

be shared publicly, and a private key, which you should ensure is never shared publicly.

The public key usually looks something like this

ssh-rsa [base64-encoded-key] [optional-comment]

And the private key usually look something like this

-----BEGIN RSA PRIVATE KEY-----

... base64-encoded key over several lines ...

-----END RSA PRIVATE KEY-----

If you have ssh-keygen installed

If you have ssh-keygen installed, but DocumenterTools.genkeys() didn't work, you can generate an SSH key

as follows. First, generate a key using ssh-keygen and save it to the file privatekey:

shell> ssh-keygen -N "" -f privatekey

Next, we need to encode the private key in Base64. Run the following command:

julia> using Base64

julia> read("privatekey", String) |> base64encode |> println

Copy and paste the output somewhere. This is your private key and is required for the last step.

Now we need to get the public key. Run the following command:

julia> read("privatekey.pub", String) |> println

Copy and paste the output somewhere. This is your public key and is required for the step Adding the Public

Key to GitHub.

If you do not have ssh-keygen

If you're using Windows, you probably don't have ssh-keygen installed. Instead, we're going to use a program

called PuTTY. The first step in the process to generate a new SSH key is to download PuTTY:

• Download and install PuTTY

PuTTY is actually a collection of a few different programs. We need to use PuTTYgen. Open it, and you should

get a window that looks like:

Now we need to generate a key.

• Click the "Generate" button, then follow the instructions and move the mouse around to create random-

ness.

https://www.chiark.greenend.org.uk/{~}sgtatham/putty/

CHAPTER 7. HOSTING DOCUMENTATION 47

Figure 7.1:

CHAPTER 7. HOSTING DOCUMENTATION 48

Figure 7.2:

CHAPTER 7. HOSTING DOCUMENTATION 49

Figure 7.3:

Once you've moved the mouse enough, the window should look like:

Now we need to save the public key somewhere.

• Copy the text in the box titled "Public key for pasting into OpenSSH authorized_keys file" and paste it

somewhere for later. This is your public key and is required for the step Adding the Public Key to GitHub

Finally, we need to save the private key somewhere.

• Click the "Conversions" tab, and then click "Export OpenSSH key". Save that file somewhere. That file

is your private key and is required for the last step.

Note

Don't save your key via the "Save private key" button as this will save the key in the wrong

format.

If you made it this far, congratulations! You now have the private and public keys needed to set up automatic

deployment of your documentation. The next steps are to add the keys to GitHub and Travis.

CHAPTER 7. HOSTING DOCUMENTATION 50

Figure 7.4:

Adding the Public Key to GitHub

In this section, we explain how to upload a public SSH key to GitHub. By this point, you should have generated

a public key and saved it to a file. If you haven't done this, go read Generating an SSH Key.

Go to https://github.com/[YOUR_USER_NAME]/[YOUR_REPO_NAME]/settings/keys and click "Add deploy

key". You should get to a page that looks like:

Now we need to fill in three pieces of information.

1. Have "Title" be e.g. "Documenter".

2. Copy and paste the public key that we generated in the Generating an SSH Key step into the "Key" field.

3. Make sure that the "Allow write access" box is checked.

Once you're done, click "Add key". Congratulations! You've added the public key to GitHub. The next step is

to add the private key to Travis or GitHub Secrets.

Adding the Private Key

In this section, we explain how to upload a private SSH key to Travis. By this point, you should have generated

a private key and saved it to a file. If you haven't done this, go read Generating an SSH Key.

First, we need to Base64 encode the private key. Open Julia, and run the command

julia> using Base64

julia> read("path/to/private/key", String) |> base64encode |> println

Copy the resulting output.

Go to https://travis-ci.com/[YOUR_USER_NAME]/[YOUR_REPO_NAME]/settings. Scroll down to the "Envi-

ronment Variables" section. It should look like this:

CHAPTER 7. HOSTING DOCUMENTATION 51

Figure 7.5:

Now, add a new environment variable called DOCUMENTER_KEY, and set its value to the output from the Julia

command above (make sure to remove the surrounding quotes).

Finally, make sure that the "Display value in build log" is left switched off and then click "Add". Congratulations!

You've added the private key to Travis.

Security warning

To reiterate: make sure that the "Display value in build log" option is OFF for the variable, so that

it does not get printed when the tests run. This base64-encoded string contains the unencrypted

private key that gives full write access to your repository, so it must be kept safe. Also, make sure

that you never expose this variable in your tests, nor merge any code that does. You can read

more about Travis environment variables in Travis User Documentation.

Final Remarks

You should now be able to continue on with the Hosting Documentation.

https://docs.travis-ci.com/user/environment-variables/#Defining-Variables-in-Repository-Settings

Chapter 8

Other Output Formats

In addition to the default native HTML output, Documenter also provides a built-in LaTeX-based PDF output.

Additional output formats are provided through plugin packages. Once the corresponding package is loaded,

the output format can be specified using the format option in makedocs.

8.1 PDF Output via LaTeX

makedocs can be switched over to use the PDF/LaTeX backend by passing a Documenter.LaTeX object as the

format keyword:

using Documenter

makedocs(format = LaTeX(), ...)

Documenter will then generate a PDF file of the documentation using LaTeX, which will be placed in the output

(build/) directory.

The makedocs argument sitename will be used for the \title field in the tex document, and if the build is for

a release tag (i.e. when the "TRAVIS_TAG" environment variable is set) the version number will be appended

to the title. The makedocs argument authors should also be specified, it will be used for the \authors field in

the tex document.

Compiling using natively installed latex

The following is required to build the documentation:

• You need pdflatex command to be installed and available to Documenter.

• You need the minted LaTeX package and its backend source highlighter Pygments installed.

• You need the DejaVu Sans and DejaVu Sans Mono fonts installed.

Compiling using docker image

It is also possible to use a prebuilt docker image to compile the .tex file. The image contains all of the required

installs described in the section above. The only requirement for using the image is that docker is installed

and available for the builder to call. You also need to tell Documenter to use the docker image, instead of

natively installed tex which is the default. This is done with the LaTeX specifier:

52

https://ctan.org/pkg/minted
https://pygments.org/
https://dejavu-fonts.github.io/
https://hub.docker.com/r/juliadocs/documenter-latex/

CHAPTER 8. OTHER OUTPUT FORMATS 53

using DocumenterLaTeX

makedocs(

format = LaTeX(platform = "docker"),

...

)

If you build the documentation on Travis you need to add

services:

- docker

to your .travis.yml file.

Compiling to LaTeX only

There's a possibility to save only the .tex file and skip the PDF compilation. For this purpose use the platform="none"

keyword:

using DocumenterLaTeX

makedocs(

format = LaTeX(platform = "none"),

...

)

8.2 Markdown & MkDocs

Markdown output requires the DocumenterMarkdown package to be available and loaded. For Travis setups, add

the package to the docs/Project.toml environment as a dependency. You also need to import the package

in make.jl:

using DocumenterMarkdown

When DocumenterMarkdown is loaded, you can specify format = Markdown() in makedocs. Documenter will

then output a set of Markdown files to the build directory that can then further be processed with MkDocs

into HTML pages.

MkDocs, of course, is not the only option you have – any markdown to HTML converter should work fine with

some amount of setting up.

Note

Markdown output used to be the default option (i.e. when leaving the format option unspecified).

The default now is the HTML output.

The MkDocs mkdocs.yml file

A MkDocs build is controlled by the mkdocs.yml configuration file. Add the file with the following content to

the docs/ directory:

site_name: PACKAGE_NAME.jl

repo_url: https://github.com/USER_NAME/PACKAGE_NAME.jl

site_description: Description...

site_author: USER_NAME

theme: readthedocs

https://github.com/JuliaDocs/DocumenterMarkdown.jl
https://www.mkdocs.org/

CHAPTER 8. OTHER OUTPUT FORMATS 54

extra_css:

- assets/Documenter.css

extra_javascript:

- https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML

- assets/mathjaxhelper.js

markdown_extensions:

- extra

- tables

- fenced_code

- mdx_math

docs_dir: 'build'

pages:

- Home: index.md

If you have run Documenter and it has generated a build/ directory, you can now try running mkdocs build

– this should now generate the site/ directory. You should also add the docs/site/ directory into your

.gitignore file, which should now look like:

docs/build/

docs/site/

This is only a basic skeleton. Read through the MkDocs documentation if you would like to know more about

the available settings.

Deployment with MkDocs

To deploy MkDocs on Travis, you also need to provide additional keyword arguments to deploydocs. Your

deploydocs call should look something like

deploydocs(

repo = "github.com/USER_NAME/PACKAGE_NAME.jl.git",

deps = Deps.pip("mkdocs", "pygments", "python-markdown-math"),

make = () -> run(`mkdocs build`)

target = "site"

)

• deps serves to provide the required Python dependencies to build the documentation

• make specifies the function that calls mkdocs to perform the second build step

• target, which specified which files get copied to gh-pages, needs to point to the site/ directory

In the example above we include the dependencies mkdocs and python-markdown-math. The former makes

sure that MkDocs is installed to deploy the documentation, and the latter provides the mdx_math markdown

extension to exploit MathJax rendering of latex equations in markdown. Other dependencies should be included

here.

https://www.mkdocs.org
https://github.com/mitya57/python-markdown-math

CHAPTER 8. OTHER OUTPUT FORMATS 55

LATEX: MkDocs and MathJax

To get MkDocs to display LATEXequations correctly we need to update several of this configuration files described

in the Package Guide.

docs/make.jl should add the python-markdown-math dependency to allow for equations to be rendered cor-

rectly.

...

deploydocs(

deps = Deps.pip("pygments", "mkdocs", "python-markdown-math"),

...

)

This package should also be installed locally so that you can preview the generated documentation prior to

pushing new commits to a repository.

$ pip install python-markdown-math

The docs/mkdocs.yml file must add the python-markdown-math extension, called mdx_math, as well as two

MathJax JavaScript files:

...

markdown_extensions:

- mdx_math

...

extra_javascript:

- https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS_HTML

- assets/mathjaxhelper.js

...

Final Remarks

Following this guide and adding the necessary changes to the configuration files should enable properly ren-

dered mathematical equations within your documentation both locally and when built and deployed using the

Travis built service.

Part III

Showcase

56

CHAPTER 8. OTHER OUTPUT FORMATS 57

This page showcases the various page elements that are supported by Documenter. It should be read side-

by-side with its source (docs/src/showcase.md) to see what syntax exactly is used to create the various

elements.

Chapter 9

Table of contents

A table of contents can be generated with an @contents block. The one for this page renders as

• Showcase

– Table of contents

– Basic Markdown

– Docstrings

– Doctesting example

– Running interactive code

– Doctest showcase

58

Chapter 10

Basic Markdown

Documenter can render all the Markdown syntax supported by the Julia Markdown parser. You can use all the

usual markdown syntax, such as bold text and italic text and print("inline code").

Code blocks are rendered as follows:

This is an non-highlighted code block.

... Rendered in monospace.

When the language is specified for the block, e.g. by starting the block with ```julia, the contents gets

highlighted appropriately (for the language that are supported by the highlighter).

function foo(x::Integer)

@show x + 1

end

For mathematics, both inline and display equations are available. Inline equations should be written as LaTeX

between two backticks, e.g. ``A x^2 + B x + C = 0``. It will render as Ax2 +Bx+ C = 0.

The LaTeX for display equations must be wrapped in a ```math code block and will render like

x1,2 =
−B ±

√
B2 − 4AC

2A

By default, the HTML output renders equations with KaTeX, but MathJax can optionally be used as well.

Finally, admonitions for notes, warnings and such:

'note' admonition

Admonitions look like this. This is a !!! note-type admonition.

Note that admonitions themselves can contain other block-level elements too, such as code

blocks. E.g.

f(x) = x^2

However, you can not have at-blocks, docstrings, doctests etc. in an admonition.

Headings are OK though:

59

https://docs.julialang.org/en/v1/stdlib/Markdown/
https://katex.org/
https://www.mathjax.org/

Part IV

Heading 1

60

Chapter 11

Heading 2

11.1 Heading 3

Heading 4

Heading 5

'info' admonition

This is a !!! info-type admonition. This is the same as a !!! note-type.

'tip' admonition

This is a !!! tip-type admonition.

'warning' admonition

This is a !!! warning-type admonition.

'danger' admonition

This is a !!! danger-type admonition.

'compat' admonition

This is a !!! compat-type admonition.

Unknown admonition class

Admonition with an unknown admonition class. This is a code example.

61

CHAPTER 11. HEADING 2 62

11.2 Lists

Tight lists look as follows

• Lorem ipsum dolor sit amet, consectetur adipiscing elit.

• Nulla quis venenatis justo.

• In non sodales eros.

If the lists contain paragraphs or other block level elements, they look like this:

• Morbi et varius nisl, eu semper orci.

Donec vel nibh sapien. Maecenas ultricies mauris sapien. Nunc et sem ac justo ultricies dignissim ac

vitae sem.

• Nulla molestie aliquet metus, a dapibus ligula.

Morbi pellentesque sodales sollicitudin. Fusce semper placerat suscipit. Aliquam semper tempus ex,

non efficitur erat posuere in. Fusce at orci eu ex sagittis commodo.

Fusce tempus scelerisque egestas. Pellentesque varius nulla a varius fringilla.

Fusce nec urna eu orci porta blandit.

Numbered lists are also supported

1. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

2. Nulla quis venenatis justo.

3. In non sodales eros.

As are nested lists

• Morbi et varius nisl, eu semper orci.

Donec vel nibh sapien. Maecenas ultricies mauris sapien. Nunc et sem ac justo ultricies dignissim ac

vitae sem.

– Lorem ipsum dolor sit amet, consectetur adipiscing elit.

– Nulla quis venenatis justo.

– In non sodales eros.

• Nulla molestie aliquet metus, a dapibus ligula.

CHAPTER 11. HEADING 2 63

1. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

2. Nulla quis venenatis justo.

3. In non sodales eros.

Fusce nec urna eu orci porta blandit.

Lists can also be included in other blocks that can contain block level items

Bulleted lists in admonitions

• Lorem ipsum dolor sit amet, consectetur adipiscing elit.

• Nulla quis venenatis justo.

• In non sodales eros.

Large lists in admonitions

• Morbi et varius nisl, eu semper orci.

Donec vel nibh sapien. Maecenas ultricies mauris sapien. Nunc et sem ac justo ultricies

dignissim ac vitae sem.

– Lorem ipsum dolor sit amet, consectetur adipiscing elit.

– Nulla quis venenatis justo.

– In non sodales eros.

• Nulla molestie aliquet metus, a dapibus ligula.

1. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

2. Nulla quis venenatis justo.

3. In non sodales eros.

Fusce nec urna eu orci porta blandit.

• Morbi et varius nisl, eu semper orci.

Donec vel nibh sapien. Maecenas ultricies mauris sapien. Nunc et sem ac justo ultricies

dignissim ac vitae sem.

– Lorem ipsum dolor sit amet, consectetur adipiscing elit.

– Nulla quis venenatis justo.

– In non sodales eros.

CHAPTER 11. HEADING 2 64

object implemented value

A ✓ 10.00

BB ✓ 1000000.00

11.3 Tables

With explicit alignment.

object implemented value

A ✓ 10.00

BB ✓ 1000000.00

Tables that are too wide should become scrollable.

object implemented value

A ✓ 10.00

BBBBBBBBBBBBBBBBBBBB✓✓100.00

11.4 Footnotes

Footnote references can be added with the [^label] syntax.1 The footnote definitions get collected at the

bottom of the page.

The footnote label can be an arbitrary string and even consist of block-level elements.2

11.5 Headings

Finally, headings render as follows

11.6 Heading level 3

Heading level 4

Heading level 5

Heading level 6 To see an example of a level 1 heading see the page title and for level 2 heading, see the

one just under this paragraph.

1A footnote definition uses the [^label]: ... sytax in a block scope.

2

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke, Profiles of the Future (1961): Clarke's Third Law.

CHAPTER 11. HEADING 2 65

Headings in sidebars

Level 1 and 2 heading show up in the sidebar, for the current page.

Chapter 12

Docstrings

The key feature of Documenter, of course, is the ability to automatically include docstrings from your package

in the manual. The following example docstrings come from the demo DocumenterShowcase module, the

source of which can be found in docs/DocumenterShowcase.jl.

To include a docstrings into a manual page, you needs to use an @docs block

```@docs

DocumenterShowcase

```

This will include a single docstring and it will look like this

Missing docstring.

Missing docstring for DocumenterShowcase. Check Documenter's build log for details.

You can include the docstrings corresponding to different function signatures one by one. E.g., the DocumenterShowcase.foo

function has two signatures – (::Integer) and (::AbstractString).

```@docs

DocumenterShowcase.foo(::Integer)

```

yielding the following docstring

Missing docstring.

Missing docstring for DocumenterShowcase.foo(::Integer). Check Documenter's build log for

details.

And now, by having DocumenterShowcase.foo(::AbstractString) in the @docs block will give the other

docstring

Missing docstring.

Missing docstring for DocumenterShowcase.foo(::AbstractString). Check Documenter's build

log for details.

However, if you want, you can also combinemultiple docstrings into a single docstring block. The DocumenterShowcase.bar

function has the same signatures as

If we just put DocumenterShowcase.bar in an @docs block, it will combine the docstrings as follows:

66

CHAPTER 12. DOCSTRINGS 67

Missing docstring.

Missing docstring for DocumenterShowcase.bar. Check Documenter's build log for details.

If you have very many docstrings, you may also want to consider using the @autodocs block which can include

a whole set of docstrings automatically based on certain filtering options

12.1 An index of docstrings

The @index block can be used to generate a list of all the docstrings on a page (or even across pages) and will

look as follows

12.2 Multiple uses of the same symbol

Sometimes a symbol has multiple docstrings, for example a type definition, inner and outer constructors. The

example below shows how to use specific ones in the documentation.

Missing docstring.

Missing docstring for DocumenterShowcase.Foo. Check Documenter's build log for details.

Missing docstring.

Missing docstring for DocumenterShowcase.Foo(). Check Documenter's build log for details.

Missing docstring.

Missing docstring for DocumenterShowcase.Foo{T}(). Check Documenter's build log for details.

Chapter 13

Doctesting example

Often you want to write code example such as this:

julia> f(x) = x^2

f (generic function with 1 method)

julia> f(3)

9

If you write them as a ```jldoctest code block, Documenter can make sure that the doctest has not become

outdated. See Doctests for more information.

Script-style doctests are supported too:

2 + 2

output

4

68

Chapter 14

Running interactive code

@example block run a code snippet and insert the output into the document. E.g. the following Markdown

```@example

2 + 3

```

becomes the following code-output block pair

2 + 3

5

If the last element can be rendered as an image or text/html etc. (the corresponding Base.show method for

the particular MIME type has to be defined), it will be rendered appropriately. e.g.:

using Main: DocumenterShowcase

DocumenterShowcase.SVGCircle("000", "aaa")

This is handy when combined with the Markdown standard library

using Markdown

Markdown.parse("""

`Markdown.MD` objects can be constructed dynamically on the fly and still get rendered "natively".

""")

\texttt{Markdown.MD} objects can be constructed dynamically on the fly and still get rendered "natively".

If the last value in an @example block is a nothing, the standard output from the blocks' evaluation gets

displayed instead

println("Hello World")

Hello World

However, do note that if the block prints to standard output, but also has a final non-nothing value, the

standard output just gets discarded:

println("Hello World")

42

42

69

CHAPTER 14. RUNNING INTERACTIVE CODE 70

14.1 REPL-type

@repl block can be used to simulate the REPL evaluation of code blocks. For example, the following block

```@repl

using Statistics

xs = collect(1:10)

median(xs)

sum(xs)

```

It gets expanded into something that looks like as if it was evaluated in the REPL, with the julia> prompt

prepended etc.:

julia> using Statistics

julia> xs = collect(1:10)

10-element Array{Int64,1}:

1

2

3

4

5

6

7

8

9

10

julia> median(xs)

5.5

julia> sum(xs)

55

Chapter 15

Doctest showcase

Currently exists just so that there would be doctests to run in manual pages of Documenter's manual. This

page does not show up in navigation.

julia> 2 + 2

4

The following doctests needs doctestsetup:

julia> Documenter.Utilities.splitexpr(:(Foo.Bar.baz))

(:(Foo.Bar), :(:baz))

Let's also try @meta blocks:

julia> f(2)

4

71

Part V

Library

72

Chapter 16

Public

16.1 Public Documentation

Documentation for Documenter.jl's public interface.

See the Internals section of the manual for internal package docs covering all submodules.

Contents

• Public Documentation

– Contents

– Index

– Public Interface

– DocumenterTools

Index

• Documenter

• Documenter.Deps

• Documenter.DocMeta

• Documenter.Deps.pip

• Documenter.DocMeta.getdocmeta

• Documenter.DocMeta.setdocmeta!

• Documenter.Writers.HTMLWriter.asset

• Documenter.deploydocs

• Documenter.doctest

• Documenter.hide

• Documenter.makedocs

• DocumenterTools.generate

• DocumenterTools.genkeys

73

CHAPTER 16. PUBLIC 74

Public Interface

Documenter – Module.

Main module for Documenter.jl – a documentation generation package for Julia.

Two functions are exported from this module for public use:

• makedocs. Generates documentation from docstrings and templated markdown files.

• deploydocs. Deploys generated documentation from Travis-CI to GitHub Pages.

Exports

• Deps

• DocMeta

• KaTeX

• MathJax

• MathJax2

• MathJax3

• asset

• deploydocs

• doctest

• hide

• makedocs

source

Documenter.makedocs – Function.

makedocs(

root = "<current-directory>",

source = "src",

build = "build",

clean = true,

doctest = true,

modules = Module[],

repo = "",

highlightsig = true,

sitename = "",

expandfirst = [],

)

Combines markdown files and inline docstrings into an interlinked document. In most cases makedocs

should be run from a make.jl file:

using Documenter

makedocs(

keywords...

)

which is then run from the command line with:

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L1-L13

CHAPTER 16. PUBLIC 75

$ julia make.jl

The folder structure that makedocs expects looks like:

docs/

build/

src/

make.jl

Keywords

root is the directory from which makedocs should run. When run from a make.jl file this keyword does

not need to be set. It is, for the most part, needed when repeatedly running makedocs from the Julia REPL

like so:

julia> makedocs(root = joinpath(dirname(pathof(MyModule)), "..", "docs"))

source is the directory, relative to root, where the markdown source files are read from. By convention

this folder is called src. Note that any non-markdown files stored in source are copied over to the build

directory when makedocs is run.

build is the directory, relative to root, into which generated files and folders are written when makedocs

is run. The name of the build directory is, by convention, called build, though, like with source, users are

free to change this to anything else to better suit their project needs.

clean tells makedocs whether to remove all the content from the build folder prior to generating new

content from source. By default this is set to true.

doctest instructs makedocs on whether to try to test Julia code blocks that are encountered in the gen-

erated document. By default this keyword is set to true. Doctesting should only ever be disabled when

initially setting up a newly developed package where the developer is just trying to get their package and

documentation structure correct. After that, it's encouraged to always make sure that documentation ex-

amples are runnable and produce the expected results. See the Doctests manual section for details about

running doctests.

Setting doctest to :only allows for doctesting without a full build. In this mode, most build stages are

skipped and the strict keyword is ignore (a doctesting error will always make makedocs throw an error).

modules specifies a vector of modules that should be documented in source. If any inline docstrings from

those modules are seen to be missing from the generated content then a warning will be printed during

execution of makedocs. By default no modules are passed to modules and so no warnings will appear.

This setting can be used as an indicator of the "coverage" of the generated documentation. For example

Documenter's make.jl file contains:

makedocs(

modules = [Documenter],

...

)

and so any docstring from the module Documenter that is not spliced into the generated documentation

in build will raise a warning.

repo specifies a template for the "link to source" feature. If you are using GitHub, this is automatically

generated from the remote. If you are using a different host, you can use this option to tell Documenter

how URLs should be generated. The following placeholders will be replaced with the respective value of

the generated link:

• {commit} Git branch or tag name, or commit hash

CHAPTER 16. PUBLIC 76

• {path} Path to the file in the repository

• {line} Line (or range of lines) in the source file

BitBucket, GitLab and Azure DevOps are supported along with GitHub, for example:

makedocs(repo = "https://gitlab.com/user/project/blob/{commit}{path}#{line}") # GitLab

makedocs(repo =

"https://dev.azure.com/org/project/_git/repo?path={path}&version={commit}{line}&lineStartColumn=1&lineEndColumn=1")

Azure DevOps

↪→

↪→

makedocs(repo = "https://bitbucket.org/user/project/src/{commit}/{path}#lines-{line}") #

BitBucket↪→

highlightsig enables or disables automatic syntax highlighting of leading, unlabeled code blocks in doc-

strings (as Julia code). For example, if your docstring begins with an indented code block containing the

function signature, then that block would be highlighted as if it were a labeled Julia code block. No other

code blocks are affected. This feature is enabled by default.

sitename is displayed in the title bar and/or the navigation menu when applicable.

expandfirst allows some of the pages to be expanded (i.e. at-blocks evaluated etc.) before the others.

Documenter normally evaluates the files in the alphabetic order of their file paths relative to src, but

expandfirst allows some pages to be prioritized.

For example, if you have foo.md and bar.md, bar.md would normally be evaluated before foo.md. But

with expandfirst = ["foo.md"], you can force foo.md to be evaluated first.

Evaluation order among the expandfirst pages is according to the order they appear in the argument.

Experimental keywords

In addition to standard arguments there is a set of non-finalized experimental keyword arguments. The be-

haviour of these may change or they may be removed without deprecation when a minor version changes

(i.e. except in patch releases).

checkdocs instructs makedocs to check whether all names within the modules defined in the modules

keyword that have a docstring attached have the docstring also listed in the manual (e.g. there's a @docs

block with that docstring). Possible values are :all (check all names; the default), :exports (check only

exported names) and :none (no checks are performed). If strict is also enabled then the build will fail if

any missing docstrings are encountered.

linkcheck – if set to true makedocs uses curl to check the status codes of external-pointing links, to

make sure that they are up-to-date. The links and their status codes are printed to the standard output.

If strict is also enabled then the build will fail if there are any broken (400+ status code) links. Default:

false.

linkcheck_ignore allows certain URLs to be ignored in linkcheck. The values should be a list of strings

(which get matched exactly) or Regex objects. By default nothing is ignored.

linkcheck_timeout configures how long curl waits (in seconds) for a link request to return a response

before giving up. The default is 10 seconds.

strict – makedocs fails the build right before rendering if it encountered any errors with the document in

the previous build phases.

workdir determines the working directory where @example and @repl code blocks are executed. It can be

either a path or the special value :build (default).

If the workdir is set to a path, the working directory is reset to that path for each code block being

evaluated. Relative paths are taken to be relative to root, but using absolute paths is recommended (e.g.

CHAPTER 16. PUBLIC 77

workdir = joinpath(@__DIR__, "..") for executing in the package root for the usual docs/make.jl

setup).

With the default :build option, the working directory is set to a subdirectory of build, determined from

the source file path. E.g. for src/foo.md it is set to build/, for src/foo/bar.md it is set to build/foo etc.

Note that workdir does not affect doctests.

Output formats

format allows the output format to be specified. The default format is Documenter.HTML which creates a

set of HTML files, but Documenter also provides PDF output via the Documenter.LaTeX writer.

Other formats can be enabled by using other addon-packages. For example, the DocumenterMarkdown

package provides the original Markdown -> Markdown output. See the Other Output Formats for more

information.

See Also

A guide detailing how to document a package using Documenter's makedocs is provided in the setup guide

in the manual.

source

Documenter.hide – Function.

hide(page)

Allows a page to be hidden in the navigation menu. It will only show up if it happens to be the current

page. The hidden page will still be present in the linear page list that can be accessed via the previous

and next page links. The title of the hidden page can be overridden using the => operator as usual.

Usage

makedocs(

...,

pages = [

...,

hide("page1.md"),

hide("Title" => "page2.md")

]

)

source

hide(root, children)

Allows a subsection of pages to be hidden from the navigationmenu. rootwill be linked to in the navigation

menu, with the title determined as usual. children should be a list of pages (note that it can not be

hierarchical).

Usage

makedocs(

...,

pages = [

...,

hide("Hidden section" => "hidden_index.md", [

"hidden1.md",

https://github.com/JuliaDocs/DocumenterMarkdown.jl
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L62-L241
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L254

CHAPTER 16. PUBLIC 78

"Hidden 2" => "hidden2.md"

]),

hide("hidden_index.md", [...])

]

)

source

Documenter.Writers.HTMLWriter.asset – Function.

asset(uri)

Can be used to pass non-local web assets to HTML, where uri should be an absolute HTTP or HTTPS URL.

It accepts the following keyword arguments:

class can be used to override the asset class, which determines how exactly the asset gets included in

the HTML page. This is necessary if the class can not be determined automatically (default).

Should be one of: :js, :css or :ico. They become a <script>, <link rel="stylesheet" type="text/css">

and <link rel="icon" type="image/x-icon"> elements in <head>, respectively.

islocal can be used to declare the asset to be local. The uri should then be a path relative to the

documentation source directory (conventionally src/). This can be useful when it is necessary to override

the asset class of a local asset.

Usage

Documenter.HTML(assets = [

Standard local asset

"assets/extra_styles.css",

Standard remote asset (extension used to determine that class = :js)

asset("https://example.com/jslibrary.js"),

Setting asset class manually, since it can't be determined manually

asset("https://example.com/fonts", class = :css),

Same as above, but for a local asset

asset("asset/foo.script", class=:js, islocal=true),

])

source

Documenter.deploydocs – Function.

deploydocs(

root = "<current-directory>",

target = "build",

repo = "<required>",

branch = "gh-pages",

deps = nothing | <Function>,

make = nothing | <Function>,

devbranch = "master",

devurl = "dev",

versions = ["stable" => "v^", "v#.#", devurl => devurl],

push_preview = false,

repo_previews = repo,

branch_previews = branch,

)

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L278
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L86-L120

CHAPTER 16. PUBLIC 79

Converts markdown files generated by makedocs to HTML and pushes them to repo. This function should

be called from within a package's docs/make.jl file after the call to makedocs, like so

using Documenter, PACKAGE_NAME

makedocs(

options...

)

deploydocs(

repo = "github.com/..."

)

When building the docs for a tag (i.e. a release) the documentation is deployed to a directory with the

tag name (i.e. vX.Y.Z) and to the stable directory. Otherwise the docs are deployed to the directory

determined by the devurl argument.

Required keyword arguments

repo is the remote repository where generated HTML content should be pushed to. Do not specify any

protocol - "https://" or "git@" should not be present. This keyword must be set and will throw an error

when left undefined. For example this package uses the following repo value:

repo = "github.com/JuliaDocs/Documenter.jl.git"

Optional keyword arguments

deploy_config determines configuration for the deployment. If this is not specified Documenter will try to

autodetect from the currently running environment. See the manual section about Deployment systems.

root has the same purpose as the root keyword for makedocs.

target is the directory, relative to root, where generated content that should be deployed to gh-pages is

written to. It should generally be the same as makedocs's build and defaults to "build".

branch is the branch where the generated documentation is pushed. If the branch does not exist, a new

orphaned branch is created automatically. It defaults to "gh-pages".

deps is the function used to install any additional dependencies needed to build the documentation. By

default nothing is installed.

It can be used e.g. for a Markdown build. The following example installed the pygments and mkdocs Python

packages using the Deps.pip function:

deps = Deps.pip("pygments", "mkdocs")

make is the function used to specify an additional build phase. By default, nothing gets executed.

devbranch is the branch that "tracks" the in-development version of the generated documentation. By

default this value is set to "master".

devurl the folder that in-development version of the docs will be deployed. Defaults to "dev".

forcepush a boolean that specifies the behavior of the git-deployment. The default (forcepush = false)

is to push a new commit, but when forcepush = true the changes will be combined with the previous

commit and force pushed, erasing the Git history on the deployment branch.

versions determines content and order of the resulting version selector in the generated html. The fol-

lowing entries are valid in the versions vector:

• "v#": includes links to the latest documentation for each major release cycle (i.e. v2.0, v1.1).

CHAPTER 16. PUBLIC 80

• "v#.#": includes links to the latest documentation for each minor release cycle (i.e. v2.0, v1.1,

v1.0, v0.1).

• "v#.#.#": includes links to all released versions.

• "v^": includes a link to the docs for the maximum version (i.e. a link vX.Y pointing to vX.Y.Z for

highest X, Y, Z, respectively).

• A pair, e.g. "first" => "second", which will put "first" in the selector, and generate a url from

which "second" can be accessed. The second argument can be "v^", to point to the maximum

version docs (as in e.g. "stable" => "v^").

push_preview a boolean that specifies if preview documentation should be deployed from pull requests

or not. If your published documentation is hosted at "https://USER.github.io/PACKAGE.jl/stable,

by default the preview will be hosted at "https://USER.github.io/PACKAGE.jl/previews/PR##". This

feature works for pull requests with head branch in the same repository, i.e. not from forks.

branch_previews is the branch to which pull request previews are deployed. It defaults to the value of

branch.

repo_previews is the remote repository to which pull request previews are deployed. It defaults to the

value of repo.

Note

Pull requests made from forks will not have previews. Hosting previews requires access to the

deploy key. Therefore, previews are available only for pull requests that were submitted directly

from the main repository.

Releases vs development branches

deploydocs will automatically figure out whether it is deploying the documentation for a tagged release

or just a development branch (usually, based on the environment variables set by the CI system).

With versioned tags, deploydocs discards the build metadata (i.e. + and everything that follows it) from the

version number when determining the name of the directory into which the documentation gets deployed.

Pre-release identifiers are preserved.

See Also

The Hosting Documentation section of the manual provides a step-by-step guide to using the deploydocs

function to automatically generate docs and push them to GitHub.

source

Documenter.Deps – Module.

Exported module that provides build and deploy dependencies and related functions.

Currently only pip is implemented.

source

Documenter.Deps.pip – Function.

pip(deps)

Installs (as non-root user) all python packages listed in deps.

Examples

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L306-L439
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Deps.jl#L1-L5

CHAPTER 16. PUBLIC 81

using Documenter

makedocs(

...

)

deploydocs(

deps = Deps.pip("pygments", "mkdocs", "mkdocs-material"),

...

)

source

Documenter.doctest – Function.

doctest(package::Module; kwargs...)

Convenience method that runs and checks all the doctests for a given Julia package. package must be

the Module object corresponding to the top-level module of the package. Behaves like an @testset call,

returning a testset if all the doctests are successful or throwing a TestSetException if there are any

failures. Can be included in other testsets.

Keywords

manual controls how manual pages are handled. By default (manual = true), doctest assumes that

manual pages are located under docs/src. If that is not the case, the manual keyword argument can be

passed to specify the directory. Setting manual = false will skip doctesting of manual pages altogether.

Additional keywords are passed on to the main doctest method.

source

doctest(source, modules; kwargs...)

Runs all the doctests in the given modules and on manual pages under the source directory. Behaves like

an @testset call, returning a testset if all the doctests are successful or throwing a TestSetException if

there are any failures. Can be included in other testsets.

The manual pages are searched recursively in subdirectories of source too. Doctesting of manual pages

can be disabled if source is set to nothing.

Keywords

testset specifies the name of test testset (default Doctests).

doctestfilters vector of regex to filter tests (see the manual on Filtering Doctests)

fix, if set to true, updates all the doctests that fail with the correct output (default false).

Warning

When running doctest(...; fix=true), Documenter will modify theMarkdown and Julia source

files. It is strongly recommended that you only run it on packages in Pkg's develop mode and

commit any staged changes. You should also review all the changes made by doctest before

committing them, as there may be edge cases when the automatic fixing fails.

source

Documenter.DocMeta – Module.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Deps.jl#L12
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L740-L756
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L774-L799

CHAPTER 16. PUBLIC 82

This module provides APIs for handling documentation metadata in modules.

The implementation is similar to how docstrings are handled in Base by the Base.Docsmodule — a special

variable is created in each module that has documentation metadata.

Public API

• DocMeta.getdocmeta

• DocMeta.setdocmeta!

Supported metadata

• DocTestSetup: contains the doctest setup code for doctests in the module.

source

Documenter.DocMeta.getdocmeta – Function.

getdocmeta(m::Module)

Returns the documentation metadata dictionary for the module m. The dictionary should be considered im-

mutable and assigning values to it is not well-defined. To set documentationmetadata values, DocMeta.setdocmeta!

should be used instead.

source

getdocmeta(m::Module, key::Symbol, default=nothing)

Return the key entry from the documentation metadata for module m, or default if the value is unset.

source

Documenter.DocMeta.setdocmeta! – Function.

setdocmeta!(m::Module, key::Symbol, value; recursive=false, warn=true)

Set the documentation metadata value key for module m to value.

If recursive is set to true, it sets the same metadata value for all the submodules too. If warn is true, it

prints a warning when key already exists and is gets rewritten.

source

DocumenterTools

DocumenterTools.generate – Function.

DocumenterTools.generate(path::String = "docs"; name = nothing, format = :html)

Create a documentation stub in path, which is usually a sub folder in the package root. The name of the

package is determined automatically, but can be given with the name keyword argument.

generate can also be called without any arguments, in which case it simply puts all the generated files

into a docs directory in the current working directory. This way, if you are already in the root directory of

your package, you generally only need to call generate() to generate the documentation stub.

generate creates the following files in path:

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L1-L15
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L45-L51
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L54-L59
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L62-L69

CHAPTER 16. PUBLIC 83

.gitignore

src/index.md

make.jl

mkdocs.yml

Project.toml

Arguments

path file path to the documentation directory to be created (default is "docs").

Keywords Arguments

name is the name of the package (without .jl). If name is not given generate tries to detect it automatically.

format can be either :html (default), :markdown or :pdf corresponding to the format keyword to Docu-

menter's makedocs function, see Documenter's manual.

Examples

julia> using DocumenterTools

julia> DocumenterTools.generate("path/to/MyPackage/docs")

[... output ...]

DocumenterTools.generate(pkg::Module; dir = "docs", format = :html)

Same as generate(path::String) but the path and name is determined automatically from the module.

Note

The package must be in development mode. Make sure you run pkg> develop pkg from the

Pkg REPL, or Pkg.develop("pkg") before generating docs.

Examples

julia> using DocumenterTools

julia> using MyPackage

julia> DocumenterTools.generate(MyPackage)

[... output ...]

DocumenterTools.genkeys – Function.

DocumenterTools.genkeys(; user="$USER", repo="$REPO")

Generates the SSH keys necessary for the automatic deployment of documentation with Documenter from

a builder to GitHub Pages.

By default the links in the instructions need to be modified to correspond to actual URLs. The optional user

and repo keyword arguments can be specified so that the URLs in the printed instructions could be copied

directly. They should be the name of the GitHub user or organization where the repository is hosted and

the full name of the repository, respectively.

This method of genkeys requires the following command lines programs to be installed:

• which (Unix) or where (Windows)

• ssh-keygen

https://juliadocs.github.io/Documenter.jl/stable/man/other-formats/

CHAPTER 16. PUBLIC 84

Examples

julia> using DocumenterTools

julia> DocumenterTools.genkeys()

[Info: add the public key below to https://github.com/$USER/$REPO/settings/keys with read/write

access:↪→

ssh-rsa

AAAAB3NzaC2yc2EAAAaDAQABAAABAQDrNsUZYBWJtXYUk21wxZbX3KxcH8EqzR3ZdTna0Wgk...jNmUiGEMKrr0aqQMZEL2BG7

username@hostname

↪→

↪→

[Info: add a secure environment variable named 'DOCUMENTER_KEY' to

https://travis-ci.com/$USER/$REPO/settings (if you deploy using Travis CI) or

https://github.com/$USER/$REPO/settings/secrets (if you deploy using GitHub Actions) with

value:

↪→

↪→

↪→

LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBNnpiRkdXQVZpYlIy...QkVBRWFjY3BxaW9uNjFLaVdOcDU5T2YrUkdmCi0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0tCg==

julia> DocumenterTools.genkeys(user="JuliaDocs", repo="DocumenterTools.jl")

[Info: add the public key below to https://github.com/JuliaDocs/DocumenterTools.jl/settings/keys

with read/write access:↪→

ssh-rsa

AAAAB3NzaC2yc2EAAAaDAQABAAABAQDrNsUZYBWJtXYUk21wxZbX3KxcH8EqzR3ZdTna0Wgk...jNmUiGEMKrr0aqQMZEL2BG7

username@hostname

↪→

↪→

[Info: add a secure environment variable named 'DOCUMENTER_KEY' to

https://travis-ci.com/JuliaDocs/DocumenterTools.jl/settings (if you deploy using Travis CI)

or https://github.com/JuliaDocs/DocumenterTools.jl/settings/secrets (if you deploy using

GitHub Actions) with value:

↪→

↪→

↪→

LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBNnpiRkdXQVZpYlIy...QkVBRWFjY3BxaW9uNjFLaVdOcDU5T2YrUkdmCi0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0tCg==

genkeys(package::Module; remote="origin")

Like the other method, this generates the SSH keys necessary for the automatic deployment of documen-

tation with Documenter from a builder to GitHub Pages, but attempts to guess the package URLs from the

Git remote.

package needs to be the top level module of the package. The remote keyword argument can be used to

specify which Git remote is used for guessing the repository's GitHub URL.

This method requires the following command lines programs to be installed:

• which (Unix) or where (Windows)

• git

• ssh-keygen

Note

The package must be in development mode. Make sure you run pkg> develop pkg from the

Pkg REPL, or Pkg.develop("pkg") before generating the SSH keys.

Examples

CHAPTER 16. PUBLIC 85

julia> using DocumenterTools

julia> DocumenterTools.genkeys(DocumenterTools)

[Info: add the public key below to https://github.com/JuliaDocs/DocumenterTools.jl/settings/keys

with read/write access:↪→

ssh-rsa

AAAAB3NzaC2yc2EAAAaDAQABAAABAQDrNsUZYBWJtXYUk21wxZbX3KxcH8EqzR3ZdTna0Wgk...jNmUiGEMKrr0aqQMZEL2BG7

username@hostname

↪→

↪→

[Info: add a secure environment variable named 'DOCUMENTER_KEY' to

https://travis-ci.com/JuliaDocs/DocumenterTools.jl/settings (if you deploy using Travis CI)

or https://github.com/JuliaDocs/DocumenterTools.jl/settings/secrets (if you deploy using

GitHub Actions) with value:

↪→

↪→

↪→

LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBNnpiRkdXQVZpYlIy...QkVBRWFjY3BxaW9uNjFLaVdOcDU5T2YrUkdmCi0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0tCg==

Chapter 17

Internals

17.1 Anchors

Documenter.Anchors – Module.

Defines the Anchor and AnchorMap types.

Anchors and AnchorMaps are used to represent links between objects within a document.

source

Documenter.Anchors.Anchor – Type.

Stores an arbitrary object called .object and it's location within a document.

Fields

• object – the stored object.

• order – ordering of object within the entire document.

• file – the destination file, in build, where the object will be written to.

• id – the generated "slug" identifying the object.

• nth – integer that unique-ifies anchors with the same id.

source

Documenter.Anchors.AnchorMap – Type.

Tree structure representating anchors in a document and their relationships with eachother.

Object Hierarchy

id -> file -> anchors

Each id maps to a file which in turn maps to a vector of Anchor objects.

source

Documenter.Anchors.add! – Method.

add!(m, anchor, id, file)

86

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L1-L5
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L13-L23
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L33-L41

CHAPTER 17. INTERNALS 87

Adds a new Anchor to the AnchorMap for a given id and file.

Either an actual Anchor object may be provided or any other object which is automatically wrapped in an

Anchor before being added to the AnchorMap.

source

Documenter.Anchors.anchor – Method.

anchor(m, id)

Returns the Anchor object matching id. file and n may also be provided. An Anchor is returned, or

nothing in case of no match.

source

Documenter.Anchors.exists – Method.

exists(m, id, file, n)

Does the given id exist within the AnchorMap? A file and integer n may also be provided to narrow the

search for existance.

source

Documenter.Anchors.fragment – Method.

Create an HTML fragment from an anchor.

source

Documenter.Anchors.isunique – Method.

isunique(m, id)

Is the id unique within the given AnchorMap? May also specify the file.

source

17.2 Builder

Documenter.Builder – Module.

Defines the Documenter.jl build "pipeline" named DocumentPipeline.

Each stage of the pipeline performs an action on a Documents.Document object. These actions may involve

creating directory structures, expanding templates, running doctests, etc.

source

Documenter.Builder.CheckDocument – Type.

Checks that all documented objects are included in the document and runs doctests on all valid Julia code

blocks.

source

Documenter.Builder.CrossReferences – Type.

Finds and sets URLs for each @ref link in the document to the correct destinations.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L51
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L105
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L74
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L127-L129
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Anchors.jl#L87
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L1-L7
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L58-L61
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L53-L55

CHAPTER 17. INTERNALS 88

Documenter.Builder.Doctest – Type.

Runs all the doctests in all docstrings and Markdown files.

source

Documenter.Builder.DocumentPipeline – Type.

The default document processing "pipeline", which consists of the following actions:

• SetupBuildDirectory

• Doctest

• ExpandTemplates

• CrossReferences

• CheckDocument

• Populate

• RenderDocument

source

Documenter.Builder.ExpandTemplates – Type.

Executes a sequence of actions on each node of the parsed markdown files in turn.

source

Documenter.Builder.Populate – Type.

Populates the ContentsNodes and IndexNodes with links.

source

Documenter.Builder.RenderDocument – Type.

Writes the document tree to the build directory.

source

Documenter.Builder.SetupBuildDirectory – Type.

Creates the correct directory layout within the build folder and parses markdown files.

source

Documenter.Builder.lt_page – Method.

lt_page(a::AbstractString, b::AbstractString)

Checks if the page path a should come before b in a sorted list. Falls back to standard string sorting, except

for prioritizing index.md (i.e. index.md always comes first).

source

Documenter.Builder.walk_navpages – Method.

walk_navpages(visible, title, src, children, parent, doc)

Recursively walks through the Documents.Document's .user.pages field, generating Documents.NavNodes

and related data structures in the process.

This implementation is the de facto specification for the .user.pages field.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L43-L45
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L24-L35
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L48-L50
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L64-L66
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L69-L71
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L38-L40
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L162-L167
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Builder.jl#L175

CHAPTER 17. INTERNALS 89

17.3 CrossReferences

Documenter.CrossReferences – Module.

Provides the crossref function used to automatically calculate link URLs.

source

Documenter.CrossReferences.crossref – Method.

crossref(doc)

Traverses a Documents.Document and replaces links containg @ref URLs with their real URLs.

source

Documenter.CrossReferences.find_object – Method.

find_object(doc, binding, typesig)

Find the included Object in the docmatching binding and typesig. The matching heuristic isn't too picky

about what matches and will only fail when no Bindings matching binding have been included.

source

17.4 DocChecks

Documenter.DocChecks – Module.

Provides the missingdocs, footnotes and linkcheck functions for checking docs.

source

Documenter.DocChecks.footnotes – Method.

footnotes(doc)

Checks footnote links in a Documents.Document.

source

Documenter.DocChecks.linkcheck – Method.

linkcheck(doc)

Checks external links using curl.

source

Documenter.DocChecks.missingdocs – Method.

missingdocs(doc)

Checks that a Documents.Document contains all available docstrings that are defined in the modules key-

word passed to Documenter.makedocs.

Prints out the name of each object that has not had its docs spliced into the document.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/CrossReferences.jl#L1-L3
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/CrossReferences.jl#L17
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/CrossReferences.jl#L164
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocChecks.jl#L1-L4
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocChecks.jl#L104
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocChecks.jl#L168
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocChecks.jl#L22

CHAPTER 17. INTERNALS 90

17.5 DocMeta

Documenter.DocMeta.initdocmeta! – Function.

source

Documenter.DocMeta.META – Constant.

The unique Symbol that is used to store the metadata dictionary in each module.

source

Documenter.DocMeta.METAMODULES – Constant.

List of modules that have the metadata dictionary added.

source

Documenter.DocMeta.METATYPE – Type.

Type of the metadata dictionary.

source

Documenter.DocMeta.VALIDMETA – Constant.

Dictionary of all valid metadata keys and their types.

source

17.6 DocSystem

Documenter.DocSystem – Module.

Provides a consistent interface to retreiving DocStr objects from the Julia docsystem in both 0.4 and 0.5.

source

Documenter.DocSystem.binding – Method.

Converts an object to a Base.Docs.Binding object.

binding(any)

Supported inputs are:

• Binding

• DataType

• Function

• Module

• Symbol

Note that unsupported objects will throw an ArgumentError.

source

Documenter.DocSystem.convertmeta – Method.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L32
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L20
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L23
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L26
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocMeta.jl#L29
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L1-L4
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L13-L27

CHAPTER 17. INTERNALS 91

convertmeta(meta)

Converts a 0.4-style docstring cache into a 0.5 one.

The original docstring cache is not modified.

source

Documenter.DocSystem.docstr – Method.

docstr(md; kws...)

Construct a DocStr object from a Markdown.MD object.

The optional keyword arguments are used to add new data to the DocStr's .data dictionary.

source

Documenter.DocSystem.getdocs – Function.

getdocs(object)

getdocs(object, typesig; kws...)

Accepts objects of any type and tries to convert them to Bindings before searching for the Binding in the

docsystem.

Note that when conversion fails this method returns an empty Vector{DocStr}.

source

Documenter.DocSystem.getdocs – Function.

getdocs(binding)

getdocs(binding, typesig; compare, modules, aliases)

Find all DocStr objects that match the provided arguments:

• binding: the name of the object.

• typesig: the signature of the object. Default: Union{}.

• compare: how to compare signatures? Exact (==) or subtypes (<:). Default: <:.

• modules: which modules to search through. Default: all modules.

• aliases: check aliases of binding when nothing is found. Default: true.

Returns a Vector{DocStr} ordered by definition order in 0.5 and by type_morespecific in 0.4.

source

Documenter.DocSystem.multidoc – Function.

Construct a MultiDoc object from the provided argument.

Valid inputs are:

• Markdown.MD

• Docs.FuncDoc

• Docs.TypeDoc

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L138
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L108
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L227
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L162

CHAPTER 17. INTERNALS 92

source

Documenter.DocSystem.parsedoc – Method.

DocSystem.parsedoc(docstr::DocStr)

Thin internal wrapper around Base.Docs.parsedoc which prints additional debug information in case

Base.Docs.parsedoc fails with an exception.

source

17.7 DocTests

Documenter.DocTests – Module.

Provides the doctest function that makes sure that the jldoctest code blocks in the documents and

docstrings run and are up to date.

source

Documenter.DocTests.doctest – Method.

doctest(blueprint, doc)

Traverses the pages and modules in the documenter blueprint, searching and executing doctests.

Will abort the document generation when an error is thrown. Use doctest = false keyword in Documenter.makedocs

to disable doctesting.

source

17.8 Documenter

Documenter.gitrm_copy – Function.

gitrm_copy(src, dst)

Uses git rm -r to remove dst and then copies src to dst. Assumes that the working directory is within

the git repository of dst is when the function is called.

This is to get around #507 on filesystems that are case-insensitive (e.g. on OS X, Windows). Without doing

a git rm first, git add -A will not detect case changes in filenames.

source

Documenter.git_push – Function.

git_push(

root, tmp, repo;

branch="gh-pages", dirname="", target="site", sha="", devurl="dev",

deploy_config, folder,

)

Handles pushing changes to the remote documentation branch. The documentation are placed in the

folder specified by subfolder.

source

Documenter.user_host_upstream – Function.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L86-L95
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocSystem.jl#L270-L275
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocTests.jl#L1-L4
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/DocTests.jl#L37
https://github.com/JuliaDocs/Documenter.jl/issues/507
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L714-L723
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L520-L529

CHAPTER 17. INTERNALS 93

user_host_upstream(repo)

Disassemble repo address into user, host, and path to repo. If no user is given, default to "git". Reassemble

user, host and path into an upstream to git push to.

source

17.9 DocumenterTools

DocumenterTools.package_devpath – Function.

package_devpath(pkg)

Returns the path to the top level directory of a devved out package source tree. The package is identified

by its top level module pkg.

Generator

DocumenterTools.Generator – Module.

Provides the functions related to generating documentation stubs.

DocumenterTools.Generator.gitignore – Method.

gitignore()

Contents of the default .gitignore file.

DocumenterTools.Generator.index – Method.

index(pkgname)

Contents of the default src/index.md file.

DocumenterTools.Generator.make – Method.

make(pkgname; format)

Contents of the default make.jl file.

DocumenterTools.Generator.mkdocs – Method.

mkdocs(pkgname; description, author, url)

Contents of the default mkdocs.yml file.

DocumenterTools.Generator.project – Method.

project(; format)

Contents of the default Project.toml file.

DocumenterTools.Generator.savefile – Method.

savefile(f, root, filename)

Attempts to save a file at $(root)/$(filename). f will be called with file stream (see open).

filename can also be a file in a subdirectory (e.g. src/index.md), and then then subdirectories will be

created automatically.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L691-L696
https://docs.julialang.org/en/v1/base/io-network/#Base.open

CHAPTER 17. INTERNALS 94

Themes

Experimental API

The theming API in DocumenterTools is very experimental and may change without notice.

DocumenterTools.Themes – Module.

The Themes module contains APIs to more easily compile the Documenter Sass themes into CSS files.

To compile an Sass file into a Documenter theme, you can use the Themes.compile function:

julia> using DocumenterTools: Themes

julia> Themes.compile("mytheme.scss")

When working on the Documenter built-in themes, the Themes.themewatcher function can be used to

automatically update all the built-in themes when any of the Sass files are modified. To enable it, just run

julia> using DocumenterTools: Themes

julia> Themes.themewatcher()

Note that it will read and overwrite the Sass and CSS files of the Documenter of the environment Docu-

menterTools is loaded in — make sure that you have Documenter added as a development dependency to

that environment.

DocumenterTools.Themes.compile – Function.

compile(src[, dst])

Compile an input Sass/SCSS file src into a CSS file. The standard Documenter Sass/SCSS files are available

in the include path.

The optional dst argument can be used to specify the output file. Otherwise, the file extension of the src

file is simply replaced by .css.

DocumenterTools.Themes.compile_native_theme – Method.

compile_native_theme(name; dst=nothing)

Compiles a native Documenter theme and places it into Documenter's assets directory.

Optionally, the dst keyword argument can be used to specify the output file.

DocumenterTools.Themes.themewatcher – Method.

themewatcher()

Starts an asynchronous background task that checks for changes in the Documenter Sass files and recom-

piles all native themes whenever changes are detected.

CHAPTER 17. INTERNALS 95

17.10 Documents

Documenter.Documents – Module.

Defines Document and its supporting types

• Page

• User

• Internal

• Globals

source

Documenter.Documents.Document – Type.

Represents an entire document.

source

Documenter.Documents.Globals – Type.

Page-local values such as current module that are shared between nodes in a page.

source

Documenter.Documents.Internal – Type.

Private state used to control the generation process.

source

Documenter.Documents.NavNode – Type.

Element in the navigation tree of a document, containing navigation references to other page, reference

to the Page object etc.

source

Documenter.Documents.Page – Type.

Represents a single markdown file.

source

Documenter.Documents.User – Type.

User-specified values used to control the generation process.

source

Documenter.Documents.getplugin – Method.

getplugin(doc::Document, T)

Retrieves the Plugin type for T stored in doc. If Twas passed to makedocs, the passed type will be returned.

Otherwise, a new T object will be created using the default constructor T().

source

Documenter.Documents.navpath – Method.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L1-L9
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L257-L259
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L27-L29
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L236-L238
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L175-L178
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L36-L38
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L210-L212
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L356-L362

CHAPTER 17. INTERNALS 96

Constructs a list of the ancestors of the navnode (inclding the navnode itself), ordered so that the root of

the navigation tree is the first and navnode itself is the last item.

source

Documenter.Documents.populate! – Method.

populate!(document)

Populates the ContentsNodes and IndexNodes of the document with links.

This can only be done after all the blocks have been expanded (and nodes constructed), because the items

have to exist before we can gather the links to those items.

source

Documenter.Documents.walk – Method.

walk(f, meta, element)

Calls f on element and any of its child elements. meta is a Dict containing metadata such as current

module.

source

17.11 DOM

Documenter.Utilities.DOM – Module.

Provides a domain specific language for representing HTML documents.

Examples

using Documenter.Utilities.DOM

`DOM` does not export any HTML tags. Define the ones we actually need.

@tags div p em strong ul li

div(

p("This ", em("is"), " a ", strong("paragraph."),

p("And this is ", strong("another"), " one"),

ul(

li("and"),

li("an"),

li("unordered"),

li("list")

)

)

Notes

All the arguments passed to a node are flattened into a single vector rather than preserving any nested

structure. Thismeans that passing two vectors of nodes to a divwill result in a div node with a single vector

of children (the concatenation of the two vectors) rather than two vector children. The only arguments that

are not flattened are nested nodes.

String arguments are automatically converted into text nodes. Text nodes do not have any children or

attributes and when displayed the string is escaped using escapehtml.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L198-L202
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L380
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documents.jl#L495

CHAPTER 17. INTERNALS 97

Attributes

As well as plain nodes shown in the previous example, nodes can have attributes added to them using the

following syntax.

div[".my-class"](

img[:src => "foo.jpg"],

input["#my-id", :disabled]

)

In the above example we add a class = "my-class" attribute to the div node, a src = "foo.jpg" to the

img, and id = "my-id" disabled attributes to the input node.

The following syntax is supported within [...]:

tag["#id"]

tag[".class"]

tag[".class#id"]

tag[:disabled]

tag[:src => "foo.jpg"]

... or any combination of the above arguments.

Internal Representation

The @tags macro defines named Tag objects as follows

@tags div p em strong

expands to

const div, p, em, strong = Tag(:div), Tag(:p), Tag(:em), Tag(:strong)

These Tag objects are lightweight representations of empty HTML elements without any attributes and

cannot be used to represent a complete document. To create an actual tree of HTML elements that can be

rendered we need to add some attributes and/or child elements using getindex or call syntax. Applying

either to a Tag object will construct a new Node object.

tag(...) # No attributes.

tag[...] # No children.

tag... # Has both attributes and children.

All three of the above syntaxes return a new Node object. Printing of Node objects is defined using the

standard Julia display functions, so only needs a call to print to print out a valid HTML document with all

nessesary text escaped.

source

Documenter.Utilities.DOM.HTMLDocument – Type.

A HTML node that wraps around the root node of the document and adds a DOCTYPE to it.

source

Documenter.Utilities.DOM.Node – Type.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L1-L94
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L300-L303

CHAPTER 17. INTERNALS 98

Represents an element within an HTML document including any textual content, children Nodes, and at-

tributes.

This type should not be constructed directly, but instead via (...) and [...] applied to a Tag or another

Node object.

source

Documenter.Utilities.DOM.Tag – Type.

Represents a empty and attribute-less HTML element.

Use @tags to define instances of this type rather than manually creating them via Tag(:tagname).

source

Documenter.Utilities.DOM.escapehtml – Method.

Escape characters in the provided string. This converts the following characters:

• < to <

• > to >

• & to &

• ' to '

• " to "

When no escaping is needed then the same object is returned, otherwise a new string is constructed with

the characters escaped. The returned object should always be treated as an immutable copy and compared

using == rather than ===.

source

Documenter.Utilities.DOM.flatten! – Method.

Signatures

flatten!(f!, out, x::Atom)

flatten!(f!, out, xs)

Flatten the contents the third argument into the second after applying the function f! to the element.

source

Documenter.Utilities.DOM.@tags – Macro.

Define a collection of Tag objects and bind them to constants with the same names.

Examples

Defined globally within a module:

@tags div ul li

Defined within the scope of a function to avoid cluttering the global namespace:

function template(args...)

@tags div ul li

...

end

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L171-L177
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L133-L138
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L271-L283
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L207-L217
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/DOM.jl#L145-L165

CHAPTER 17. INTERNALS 99

17.12 Expanders

Documenter.Expanders – Module.

Defines node "expanders" that transform nodes from the parsed markdown files.

source

Documenter.Expanders.AutoDocsBlocks – Type.

Parses each code block where the language is @autodocs and replaces it with all the docstrings that match

the provided key/value pairs Modules = ... and Order =

```@autodocs

Modules = [Foo, Bar]

Order = [:function, :type]

```

source

Documenter.Expanders.ContentsBlocks – Type.

Parses each code block where the language is @contents and replaces it with a nested list of all Header

nodes in the generated document. The pages and depth of the list can be set using Pages = [...] and

Depth = N where N is and integer.

```@contents

Pages = ["foo.md", "bar.md"]

Depth = 1

```

The default Depth value is 2.

source

Documenter.Expanders.DocsBlocks – Type.

Parses each code block where the language is @docs and evaluates the expressions found within the block.

Replaces the block with the docstrings associated with each expression.

```@docs

Documenter

makedocs

deploydocs

```

source

Documenter.Expanders.EvalBlocks – Type.

Parses each code block where the language is @eval and evaluates it's content. Replaces the block with

the value resulting from the evaluation. This can be useful for inserting generated content into a document

such as plots.

```@eval

using PyPlot

x = linspaceπ(-, π)

y = sin(x)

plot(x, y, color = "red")

savefig("plot.svg")

Markdown.parse("![Plot](plot.svg)")

```

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L1-L3
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L112-L122
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L158-L170
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L98-L109

CHAPTER 17. INTERNALS 100

source

Documenter.Expanders.ExampleBlocks – Type.

Parses each code block where the language is @example and evaluates the parsed Julia code found within.

The resulting value is then inserted into the final document after the source code.

```@example

a = 1

b = 2

a + b

```

source

Documenter.Expanders.ExpanderPipeline – Type.

The default node expander "pipeline", which consists of the following expanders:

• TrackHeaders

• MetaBlocks

• DocsBlocks

• AutoDocsBlocks

• EvalBlocks

• IndexBlocks

• ContentsBlocks

• ExampleBlocks

• SetupBlocks

• REPLBlocks

source

Documenter.Expanders.IndexBlocks – Type.

Parses each code block where the language is @index and replaces it with an index of all docstrings spliced

into the document. The pages that are included can be set using a key/value pair Pages = [...] such as

```@index

Pages = ["foo.md", "bar.md"]

```

source

Documenter.Expanders.MetaBlocks – Type.

Parses each code block where the language is @meta and evaluates the key/value pairs found within the

block, i.e.

```@meta

CurrentModule = Documenter

DocTestSetup = quote

using Documenter

end

```

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L125-L140
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L173-L185
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L60-L74
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L145-L155

CHAPTER 17. INTERNALS 101

source

Documenter.Expanders.REPLBlocks – Type.

Similar to the ExampleBlocks expander, but inserts a Julia REPL prompt before each toplevel expression

in the final document.

source

Documenter.Expanders.SetupBlocks – Type.

Similar to the ExampleBlocks expander, but hides all output in the final document.

source

Documenter.Expanders.TrackHeaders – Type.

Tracks all Markdown.Header nodes found in the parsed markdown files and stores an Anchors.Anchor

object for each one.

source

17.13 Markdown2

Documentation for the private Markdown2 module.

Index

• Documenter.Utilities.Markdown2

• Documenter.Utilities.Markdown2.List

• Documenter.Utilities.Markdown2.MD

• Documenter.Utilities.Markdown2.MarkdownBlockNode

• Documenter.Utilities.Markdown2.MarkdownInlineNode

• Documenter.Utilities.Markdown2.MarkdownNode

• Documenter.Utilities.Markdown2.Paragraph

• Documenter.Utilities.Markdown2.ThematicBreak

• Base.convert

• Documenter.Utilities.Markdown2.walk

Docstrings

Documenter.Utilities.Markdown2 – Module.

Provides types and functions to work with Markdown syntax trees.

The module is similar to the Markdown standard library, but aims to be stricter and provide a more well-

defined API.

Note

Markdown2 does not provide a parser, just a data structure to represent Markdown ASTs.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L83-L95
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L188-L191
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L194-L196
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Expanders.jl#L77-L80
https://docs.julialang.org/en/v1/stdlib/Markdown/

CHAPTER 17. INTERNALS 102

Markdown nodes

The types in this module represent the different types of nodes you can have in a Markdown abstract

syntax tree (AST). Currently it supports all the nodes necessary to represent Julia flavored Markdown. But

having this as a separate module from the Markdown standard library allows us to consistently extend the

node type we support (e.g. to support the raw HTML nodes from CommonMark, or strikethrough text from

GitHub Flavored Markdown).

Markdown nodes split into to two different classes: block nodes and inline nodes. Generally, the direct

children of a particular node can only be either inline or block (e.g. paragraphs contain inline nodes,

admonitions contain block nodes as direct children).

In Markdown2, this is represented using a simple type hierarchy. All Markdown nodes are subtypes of

either the MarkdownBlockNode or the MarkdownInlineNode abstract type. Both of these abstract types

themselves are a subtype of the MarkdownNode.

Additional methods

• The Base.convert(::Type{Markdown2.MD}, md::Markdown.MD)method can be used to convert the

Julia Markdown standard libraries ASTs into Markdown2 ASTs.

• The walk function can be used for walking over a Markdown2.MD tree.

source

Documenter.Utilities.Markdown2.List – Type.

struct List <: MarkdownBlockNode

If .orderedstart is nothing then the list is unordered. Otherwise is specifies the first number in the list.

source

Documenter.Utilities.Markdown2.MD – Type.

struct MD

The root node of a Markdown document. Its children are a list of top-level block-type nodes. Note that MD

is not a subtype of MarkdownNode.

source

Documenter.Utilities.Markdown2.MarkdownBlockNode – Type.

abstract type MarkdownBlockNode <: MarkdownNode

Supertype for all block-level Markdown nodes.

source

Documenter.Utilities.Markdown2.MarkdownInlineNode – Type.

abstract type MarkdownInlineNode <: MarkdownNode

Supertype for all inline Markdown nodes.

source

Documenter.Utilities.Markdown2.MarkdownNode – Type.

https://spec.commonmark.org/0.29/#raw-html
https://github.github.com/gfm/#strikethrough-extension-
https://spec.commonmark.org/0.29/#blocks-and-inlines
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L1-L34
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L128-L133
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L65-L70
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L49-L53
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L56-L60

CHAPTER 17. INTERNALS 103

abstract type MarkdownNode

Supertype for all Markdown nodes.

source

Documenter.Utilities.Markdown2.Paragraph – Type.

struct Paragraph <: MarkdownBlockNode

Represents a paragraph block-type node. Its children are inline nodes.

source

Documenter.Utilities.Markdown2.ThematicBreak – Type.

struct ThematicBreak <: MarkdownBlockNode

A block node represeting a thematic break (a <hr> tag).

source

Base.convert – Method.

convert(::Type{MD}, md::Markdown.MD) -> Markdown2.MD

Converts a Markdown standard library AST into a Markdown2 AST.

source

Documenter.Utilities.Markdown2.walk – Function.

walk(f, element)

Calls f(element) on element and any of its child elements. The elements are assumed to be Markdown2

elements.

source

17.14 MDFlatten

Documenter.Utilities.MDFlatten – Module.

Provides the mdflatten function that can "flatten" Markdown objects into a string, with formatting etc.

stripped.

Note that the tests in test/mdflatten.jl should be considered to be the spec for the output (number of

newlines, indents, formatting, etc.).

source

Documenter.Utilities.MDFlatten.mdflatten – Method.

Convert a Markdown object to a String of only text (i.e. not formatting info).

It drop most of the extra information (e.g. language of a code block, URLs) and formatting (e.g. emphasis,

headers). This "flattened" representation can then be used as input for search engines.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L42-L46
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L114-L118
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L89-L93
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L208-L212
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Markdown2.jl#L288-L293
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/MDFlatten.jl#L1-L7
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/MDFlatten.jl#L19-L25

CHAPTER 17. INTERNALS 104

17.15 Selectors

Documenter.Utilities.Selectors – Module.

An extensible code selection interface.

The Selectorsmodule provides an extensible way to write code that has to dispatch on different predicates

without hardcoding the control flow into a single chain of if statements.

In the following example a selector for a simple condition is implemented and the generated selector code

is described:

abstract type MySelector <: Selectors.AbstractSelector end

The different cases we want to test.

abstract type One <: MySelector end

abstract type NotOne <: MySelector end

The order in which to test the cases.

Selectors.order(::Type{One}) = 0.0

Selectors.order(::Type{NotOne}) = 1.0

The predicate to test against.

Selectors.matcher(::Type{One}, x) = x === 1

Selectors.matcher(::Type{NotOne}, x) = x !== 1

What to do when a test is successful.

Selectors.runner(::Type{One}, x) = println("found one")

Selectors.runner(::Type{NotOne}, x) = println("not found")

Test our selector with some numbers.

for i in 0:5

Selectors.dispatch(MySelector, i)

end

Selectors.dispatch(Selector, i) will behave equivalent to the following:

function dispatch(::Type{MySelector}, i::Int)

if matcher(One, i)

runner(One, i)

elseif matcher(NotOne, i)

runner(NotOne, i)

end

end

and further to

function dispatch(::Type{MySelector}, i::Int)

if i === 1

println("found one")

elseif i !== 1

println("not found")

end

end

The module provides the following interface for creating selectors:

CHAPTER 17. INTERNALS 105

• order

• matcher

• runner

• strict

• disable

• dispatch

source

Documenter.Utilities.Selectors.AbstractSelector – Type.

Root selector type. Each user-defined selector must subtype from this, i.e.

abstract type MySelector <: Selectors.AbstractSelector end

abstract type First <: MySelector end

abstract type Second <: MySelector end

source

Documenter.Utilities.Selectors.disable – Method.

Disable a particular case in a selector so that it is never used.

Selectors.disable(::Type{Debug}) = true

source

Documenter.Utilities.Selectors.dispatch – Method.

Call Selectors.runner(T, args...) where T is a subtype of MySelector for which matcher(T, args...)

is true.

Selectors.dispatch(MySelector, args...)

source

Documenter.Utilities.Selectors.matcher – Function.

Define the matching test for each case in a selector, i.e.

Selectors.matcher(::Type{First}, x) = x == 1

Selectors.matcher(::Type{Second}, x) = true

Note that the return type must be Bool.

To match against multiple cases use the Selectors.strict function.

source

Documenter.Utilities.Selectors.order – Function.

Define the precedence of each case in a selector, i.e.

Selectors.order(::Type{First}) = 1.0

Selectors.order(::Type{Second}) = 2.0

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L1-L69
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L74-L83
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L147-L153
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L156-L163
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L99-L110

CHAPTER 17. INTERNALS 106

Note that the return type must be Float64. Defining multiple case types to have the same order will result

in undefined behaviour.

source

Documenter.Utilities.Selectors.runner – Function.

Define the code that will run when a particular Selectors.matcher test returns true, i.e.

Selectors.runner(::Type{First}, x) = println("`x` is equal to `1`.")

Selectors.runner(::Type{Second}, x) = println("`x` is not equal to `1`.")

source

Documenter.Utilities.Selectors.strict – Method.

Define whether a selector case will "fallthrough" or not when successfully matched against. By default

matching is strict and does not fallthrough to subsequent selector cases.

Adding a debugging selector case.

abstract type Debug <: MySelector end

Insert prior to all other cases.

Selectors.order(::Type{Debug}) = 0.0

Fallthrough to the next case on success.

Selectors.strict(::Type{Debug}) = false

We always match, regardless of the value of `x`.

Selectors.matcher(::Type{Debug}, x) = true

Print some debugging info.

Selectors.runner(::Type{Debug}, x) = @show x

source

17.16 TextDiff

Documenter.Utilities.TextDiff.splitby – Method.

splitby(reg, text)

Splits text at regex matches, returning an array of substrings. The parts of the string that match the

regular expression are also included at the ends of the returned strings.

source

17.17 Utilities

Documenter.Utilities – Module.

Provides a collection of utility functions and types that are used in other submodules.

source

Documenter.Utilities.Default – Type.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L86-L96
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L113-L121
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Selectors.jl#L124-L144
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/TextDiff.jl#L42
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L1-L3

CHAPTER 17. INTERNALS 107

struct Default{T}

Internal wrapper type that is meant to be used in situations where it is necessary to distinguish whether

the user explicitly passed the same value as the default value to a keyword argument, or whether the

keyword argument was not passed at all.

function foo(; kwarg = Default("default value"))

if isa(kwarg, Default)

User did not explicitly pass a value for kwarg

else kwarg === "default value"

User passed "default value" explicitly

end

end

source

Documenter.Utilities.Object – Type.

Represents an object stored in the docsystem by its binding and signature.

source

Documenter.Utilities.assetsdir – Method.

Returns the path to the Documenter assets directory.

source

Documenter.Utilities.check_kwargs – Method.

Prints a formatted warning to the user listing unrecognised keyword arguments.

source

Documenter.Utilities.codelang – Method.

codelang(infostring)

Extracts the language identifier from the info string of a Markdown code block.

source

Documenter.Utilities.currentdir – Method.

Returns the current directory.

source

Documenter.Utilities.doccat – Method.

Returns the category name of the provided Object.

source

Documenter.Utilities.docs – Function.

docs(ex, str)

Returns an expression that, when evaluated, returns the docstrings associated with ex.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L632-L648
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L175-L177
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L48-L50
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L128-L130
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L654-L658
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L40-L42
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L241-L243
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L227-L231

CHAPTER 17. INTERNALS 108

Documenter.Utilities.filterdocs – Method.

filterdocs(doc, modules)

Remove docstrings from the markdown object, doc, that are not from one of modules.

source

Documenter.Utilities.get_commit_short – Method.

get_commit_short(dir)

Returns the first 5 characters of the current git commit hash of the directory dir.

source

Documenter.Utilities.isabsurl – Method.

isabsurl(url)

Checks whether url is an absolute URL (as opposed to a relative one).

source

Documenter.Utilities.issubmodule – Method.

issubmodule(sub, mod)

Checks whether sub is a submodule of mod. A module is also considered to be its own submodule.

E.g. A.B.C is a submodule of A, A.B and A.B.C, but it is not a submodule of D, A.D nor A.B.C.D.

source

Documenter.Utilities.mdparse – Method.

mdparse(s::AbstractString; mode=:single)

Parses the given string as Markdown using Markdown.parse, but strips away the surrounding layers, such

as the outermost Markdown.MD. What exactly is returned depends on the mode keyword.

The mode keyword argument can be one of the following:

• :single (default) – returns a single block-level object (e.g. Markdown.Paragraph or Markdown.Admonition)

and errors if the string parses into multiple blocks.

• :blocks – the function returns a Vector{Any} of Markdown blocks.

• :span – Returns a Vector{Any} of span-level items, stripping away the outer block. This requires the

string to parse into a single Markdown.Paragraph, the contents of which gets returned.

source

Documenter.Utilities.nodocs – Method.

Does the given docstring represent actual documentation or a no docs error message?

source

Documenter.Utilities.object – Method.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L265-L269
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L466
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L567-L571
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L551-L559
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L575-L590
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L309-L311

CHAPTER 17. INTERNALS 109

object(ex, str)

Returns a expression that, when evaluated, returns an Object representing ex.

source

Documenter.Utilities.parseblock – Method.

Returns a vector of parsed expressions and their corresponding raw strings.

Returns a Vector of tuples (expr, code), where expr is the corresponding expression (e.g. a Expr or

Symbol object) and code is the string of code the expression was parsed from.

The keyword argument skip = N drops the leading N lines from the input string.

If raise=false is passed, the Meta.parse does not raise an exception on parse errors, but instead returns

an expression that will raise an error when evaluated. parseblock returns this expression normally and it

must be handled appropriately by the caller.

source

Documenter.Utilities.relpath_from_repo_root – Method.

relpath_from_repo_root(file)

Returns the path of file, relative to the root of the Git repository, or nothing if the file is not in a Git

repository.

source

Documenter.Utilities.repo_root – Method.

repo_root(file; dbdir=".git")

Tries to determine the root directory of the repository containing file. If the file is not in a repository, the

function returns nothing.

The dbdir keyword argument specifies the name of the directory we are searching for to determine if this

is a repostory or not. If there is a file called dbdir, then it's contents is checked under the assumption that

it is a Git worktree or a submodule.

source

Documenter.Utilities.slugify – Method.

Slugify a string into a suitable URL.

source

Documenter.Utilities.srcpath – Method.

Find the path of a file relative to the source directory. root is the path to the directory containing the file

file.

It is meant to be used with walkdir(source).

source

Documenter.Utilities.submodules – Method.

Returns the set of submodules of a given root module/s.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L196-L200
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L79-L91
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L350-L355
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L317-L326
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L65-L67
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L55-L60
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Utilities/Utilities.jl#L145-L147

CHAPTER 17. INTERNALS 110

17.18 Writers

Documenter.Writers – Module.

A module that provides several renderers for Document objects. The supported formats are currently:

• :markdown – the default format.

• :html – generates a complete HTML site with navigation and search included.

• :latex – generates a PDF using LuaLaTeX.

source

Documenter.Writers.render – Method.

Writes a Documents.Document object to .user.build directory in the formats specified in the .user.format

vector.

Adding additional formats requires adding new Selector definitions as follows:

abstract type CustomFormat <: FormatSelector end

Selectors.order(::Type{CustomFormat}) = 4.0 # or a higher number.

Selectors.matcher(::Type{CustomFormat}, fmt, _) = fmt === :custom

Selectors.runner(::Type{CustomFormat}, _, doc) = CustomWriter.render(doc)

Definition of `CustomWriter` module below...

source

Documenter.Writers.MarkdownWriter – Module.

A module for rendering Document objects to markdown.

source

Documenter.Writers.HTMLWriter – Module.

A module for rendering Document objects to HTML.

Keywords

HTMLWriter uses the following additional keyword arguments that can be passed to Documenter.makedocs:

authors, pages, sitename, version. The behavior of HTMLWriter can be further customized by setting

the format keyword of Documenter.makedocs to a HTML, which accepts the following keyword arguments:

analytics, assets, canonical, disable_git, edit_link, prettyurls, collapselevel, sidebar_sitename,

highlights, mathengine and footer.

sitename is the site's title displayed in the title bar and at the top of the *navigation menu. This argument

is mandatory for HTMLWriter.

pages defines the hierarchy of the navigation menu.

Experimental keywords

version specifies the version string of the current version which will be the selected option in the version

selector. If this is left empty (default) the version selector will be hidden. The special value git-commit

sets the value in the output to git:{commit}, where {commit} is the first few characters of the current

commit hash.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/Writers.jl#L1-L9
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/Writers.jl#L44-L59
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/MarkdownWriter.jl#L1-L3

CHAPTER 17. INTERNALS 111

HTML Plugin options

The HTML Documenter.Plugin provides additional customization options for the HTMLWriter. For more

information, see the HTML documentation.

Page outline

The HTMLWriter makes use of the page outline that is determined by the headings. It is assumed that

if the very first block of a page is a level 1 heading, then it is intended as the page title. This has two

consequences:

1. It is then used to automatically determine the page title in the navigation menu and in the <title>

tag, unless specified in the .pages option.

2. If the first heading is interpreted as being the page title, it is not displayed in the navigation sidebar.

source

Documenter.Writers.HTMLWriter.ASSETS – Constant.

The root directory of the HTML assets.

source

Documenter.Writers.HTMLWriter.ASSETS_SASS – Constant.

The directory where all the Sass/SCSS files needed for theme building are.

source

Documenter.Writers.HTMLWriter.ASSETS_THEMES – Constant.

Directory for the compiled CSS files of the themes.

source

Documenter.Writers.HTMLWriter.MDBlockContext – Type.

MDBlockContext is a union of all the Markdown nodes whose children should be blocks. It can be used to

dispatch on all the block-context nodes at once.

source

Documenter.Writers.HTMLWriter.THEMES – Constant.

List of Documenter native themes.

source

Documenter.Writers.HTMLWriter.HTML – Type.

HTML(kwargs...)

Sets the behavior of HTMLWriter.

Keyword arguments

prettyurls (default true) – allows toggling the pretty URLs feature.

By default (i.e. when prettyurls is set to true), Documenter creates a directory structure that hides

the .html suffixes from the URLs (e.g. by default src/foo.md becomes src/foo/index.html, but can

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1-L40
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L65
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L67
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L69
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1597-L1600
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L63

CHAPTER 17. INTERNALS 112

be accessed with via src/foo/ in the browser). This structure is preferred when publishing the generate

HTML files as a website (e.g. on GitHub Pages), which is Documenter's primary use case.

If prettyurls = false, then Documenter generates src/foo.html instead, suitable for local documen-

tation builds, as browsers do not normally resolve foo/ to foo/index.html for local files.

To have pretty URLs disabled in local builds, but still have them enabled for the automatic CI deployment

builds, you can set prettyurls = get(ENV, "CI", nothing) == "true" (the specific environment vari-

able you will need to check may depend on the CI system you are using, but this will work on Travis CI).

disable_git can be used to disable calls to git when the document is not in a Git-controlled repository.

Without setting this to true, Documenter will throw an error and exit if any of the Git commands fail. The

calls to Git are mainly used to gather information about the current commit hash and file paths, necessary

for constructing the links to the remote repository.

edit_link can be used to specify which branch, tag or commit (when passed a String) in the remote

repository the "Edit on ..." links point to. If a special Symbol value :commit is passed, the current commit

will be used instead. If set to nothing, the link edit link will be hidden altogether. Default value is "master",

making the edit link point to the master branch.

canonical specifies the canonical URL for your documentation. We recommend you set this to the base url

of your stable documentation, e.g. https://juliadocs.github.io/Documenter.jl/stable. This allows

search engines to know which version to send their users to. See wikipedia for more information. Default

is nothing, in which case no canonical link is set.

analytics can be used specify the Google Analytics tracking ID.

assets can be used to include additional assets (JS, CSS, ICO etc. files). See below for more information.

sidebar_sitename determines whether the site name is shown in the sidebar or not. Setting it to false

can be useful when the logo already contains the name of the package. Defaults to true.

highlights can be used to add highlighting for additional languages. By default, Documenter already

highlights all the "Common" highlight.js languages and Julia (julia, julia-repl). Additional languages

must be specified by" their filenames as they appear on CDNJS for the highlight.js version Documenter is

using. E.g. to include highlighting for YAML and LLVM IR, you would set highlights = ["llvm", "yaml"].

Note that no verification is done whether the provided language names are sane.

mathengine specifies which LaTeX rendering engine will be used to render the math blocks. The options

are either KaTeX (default), MathJax v2, or MathJax v3, enabled by passing an instance of KaTeX, MathJax2,

or MathJax3 objects, respectively. The rendering engine can further be customized by passing options to

the KaTeX or MathJax2/MathJax3 constructors.

lang specifies the lang attribute of the top-level <html> element, declaring the language of the generated

pages. The default value is "en".

footer can be a valid single-line markdown String or nothing and is displayed below the page navi-

gation. Defaults to "Powered by [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl)

and the [Julia Programming Language](https://julialang.org/).".

Default and custom assets

Documenter copies all files under the source directory (e.g. /docs/src/) over to the compiled site. It also

copies a set of default assets from /assets/html/ to the site's assets/ directory, unless the user already

had a file with the same name, in which case the user's files overrides the Documenter's file. This could,

in principle, be used for customizing the site's style and scripting.

The HTML output also links certain custom assets to the generated HTML documents, specifically a logo

and additional javascript files. The asset files that should be linked must be placed in assets/, under the

https://en.wikipedia.org/wiki/Canonical_link_element
https://highlightjs.org/download/
https://cdnjs.com/libraries/highlight.js
https://katex.org/
https://www.mathjax.org/
https://www.mathjax.org/
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/lang

CHAPTER 17. INTERNALS 113

source directory (e.g /docs/src/assets) and must be on the top level (i.e. files in the subdirectories of

assets/ are not linked).

For the logo, Documenter checks for the existence of assets/logo.{svg,png,webp,gif,jpg,jpeg}, in

this order. The first one it finds gets displayed at the top of the navigation sidebar. It will also check for

assets/logo-dark.{svg,png,webp,gif,jpg,jpeg} and use that for dark themes.

Additional JS, ICO, and CSS assets can be included in the generated pages by passing them as a list with

the assets keyword. Each asset will be included in the <head> of every page in the order in which they

are given. The type of the asset (i.e. whether it is going to be included with a <script> or a <link> tag)

is determined by the file's extension – either .js, .ico1, or .css (unless overridden with asset).

Simple strings are assumed to be local assets and that each correspond to a file relative to the documen-

tation source directory (conventionally src/). Non-local assets, identified by their absolute URLs, can be

included with the asset function.

source

Documenter.Writers.HTMLWriter.HTMLContext – Type.

HTMLWriter-specific globals that are passed to domify and other recursive functions.

source

Documenter.Writers.HTMLWriter.KaTeX – Type.

KaTeX(config::Dict = <default>, override = false)

An instance of the KaTeX type can be passed to HTML via the mathengine keyword to specify that the KaTeX

rendering engine should be used in the HTML output to render mathematical expressions.

A dictionary can be passed via the config argument to configure KaTeX. It becomes the options argument

of renderMathInElement. By default, Documenter only sets a custom delimiters option.

By default, the user-provided dictionary gets merged with the default dictionary (i.e. the resulting con-

figuration dictionary will contain the values from both dictionaries, but e.g. setting your own delimiters

value will override the default). This can be overridden by setting override to true, in which case the

default values are ignored and only the user-provided dictionary is used.

source

Documenter.Writers.HTMLWriter.MathJax2 – Type.

MathJax2(config::Dict = <default>, override = false)

An instance of the MathJax2 type can be passed to HTML via the mathengine keyword to specify that the

MathJax v2 rendering engine should be used in the HTML output to render mathematical expressions.

A dictionary can be passed via the config argument to configureMathJax. It gets passed to the MathJax.Hub.Config

function. By default, Documenter sets custom configurations for tex2jax, config, jax, extensions and

Tex.

By default, the user-provided dictionary gets merged with the default dictionary (i.e. the resulting config-

uration dictionary will contain the values from both dictionaries, but e.g. setting your own tex2jax value

will override the default). This can be overridden by setting override to true, in which case the default

values are ignored and only the user-provided dictionary is used.

1Adding an ICO asset is primarily useful for setting a custom favicon.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L268-L372
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L560-L563
https://katex.org/
https://katex.org/
https://katex.org/docs/autorender.html#api
https://katex.org/docs/autorender.html#api
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L142-L158
https://www.mathjax.org/
https://docs.mathjax.org/en/v2.7-latest/options/

CHAPTER 17. INTERNALS 114

The URL of the MathJax JS file can be overridden using the url keyword argument (e.g. to use a particular

minor version).

source

Documenter.Writers.HTMLWriter.MathJax3 – Type.

MathJax3(config::Dict = <default>, override = false)

An instance of the MathJax3 type can be passed to HTML via the mathengine keyword to specify that the

MathJax v3 rendering engine should be used in the HTML output to render mathematical expressions.

A dictionary can be passed via the config argument to configureMathJax. It gets passed to Window.MathJax

function. By default, Documenter specifies in the key tex that $...$ and \(...\) denote inline math, that

AMS style tags should be used and the base, ams and autoload packages should be imported. The key

options, by default, specifies which HTML classes to ignore and which to process using MathJax.

By default, the user-provided dictionary gets merged with the default dictionary (i.e. the resulting config-

uration dictionary will contain the values from both dictionaries, but e.g. setting your own tex value will

override the default). This can be overridden by setting override to true, in which case the default values

are ignored and only the user-provided dictionary is used.

The URL of the MathJax JS file can be overridden using the url keyword argument (e.g. to use a particular

minor version).

source

Documenter.Writers.HTMLWriter.MathJax – Function.

deprecated – Use MathJax2 instead

source

Documenter.Writers.HTMLWriter.asset – Method.

asset(uri)

Can be used to pass non-local web assets to HTML, where uri should be an absolute HTTP or HTTPS URL.

It accepts the following keyword arguments:

class can be used to override the asset class, which determines how exactly the asset gets included in

the HTML page. This is necessary if the class can not be determined automatically (default).

Should be one of: :js, :css or :ico. They become a <script>, <link rel="stylesheet" type="text/css">

and <link rel="icon" type="image/x-icon"> elements in <head>, respectively.

islocal can be used to declare the asset to be local. The uri should then be a path relative to the

documentation source directory (conventionally src/). This can be useful when it is necessary to override

the asset class of a local asset.

Usage

Documenter.HTML(assets = [

Standard local asset

"assets/extra_styles.css",

Standard remote asset (extension used to determine that class = :js)

asset("https://example.com/jslibrary.js"),

Setting asset class manually, since it can't be determined manually

asset("https://example.com/fonts", class = :css),

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L173-L193
https://www.mathjax.org/
https://docs.mathjax.org/en/latest/options/
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L226-L248
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L224

CHAPTER 17. INTERNALS 115

Same as above, but for a local asset

asset("asset/foo.script", class=:js, islocal=true),

])

source

Documenter.Writers.HTMLWriter.collect_subsections – Method.

Returns an ordered list of tuples, (toplevel, anchor, text), corresponding to level 1 and 2 headings on

the page. Note that if the first header on the page is a level 1 header then it is not included – it is assumed

to be the page title and so does not need to be included in the navigation menu twice.

source

Documenter.Writers.HTMLWriter.copy_asset – Method.

Copies an asset from Documenters assets/html/ directory to doc.user.build. Returns the path of the

copied asset relative to .build.

source

Documenter.Writers.HTMLWriter.domify – Method.

Converts recursively a Documents.Page, Markdown or Documenter *Node objects into HTML DOM.

source

Documenter.Writers.HTMLWriter.fixlinks! – Method.

Replaces URLs in Markdown.Link elements (if they point to a local .md page) with the actual URLs.

source

Documenter.Writers.HTMLWriter.get_url – Method.

Returns the full path corresponding to a path of a .md page file. The the input and output paths are assumed

to be relative to src/.

source

Documenter.Writers.HTMLWriter.get_url – Method.

Returns the full path of a Documents.NavNode relative to src/.

source

Documenter.Writers.HTMLWriter.getpage – Method.

Returns a page (as a Documents.Page object) using the HTMLContext.

source

Documenter.Writers.HTMLWriter.mdconvert – Method.

Convert a markdown object to a DOM.Node object.

The parent argument is passed to allow for context-dependant conversions.

source

Documenter.Writers.HTMLWriter.navhref – Method.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L86-L120
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1562-L1567
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L690-L693
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1307-L1310
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1793-L1796
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1490-L1493
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1508-L1510
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L620-L622
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1603-L1607

CHAPTER 17. INTERNALS 116

Get the relative hyperlink between two Documents.NavNodes. Assumes that both Documents.NavNodes

have an associated Documents.Page (i.e. .page is not nothing).

source

Documenter.Writers.HTMLWriter.navitem – Method.

navitem returns the lists and list items of the navigation menu. It gets called recursively to construct the

whole tree.

It always returns a DOM.Node. If there's nothing to display (e.g. the node is set to be invisible), it returns

an empty text node (DOM.Node("")).

source

Documenter.Writers.HTMLWriter.open_output – Method.

Opens the output file of the navnode in write node. If necessary, the path to the output file is created

before opening the file.

source

Documenter.Writers.HTMLWriter.pagetitle – Method.

Tries to guess the page title by looking at the <h1> headers and returns the header contents of the first

<h1> on a page (or nothing if the algorithm was unable to find any <h1> headers).

source

Documenter.Writers.HTMLWriter.pretty_url – Method.

If prettyurls for HTML is enabled, returns a "pretty" version of the path which can then be used in links

in the resulting HTML file.

source

Documenter.Writers.HTMLWriter.relhref – Method.

Calculates a relative HTML link from one path to another.

source

Documenter.Writers.HTMLWriter.render_html – Function.

Renders the main <html> tag.

source

Documenter.Writers.HTMLWriter.render_page – Method.

Constructs and writes the page referred to by the navnode to .build.

source

Documenter.Writers.HTMLWriter.render_settings – Method.

Renders the modal settings dialog.

source

Documenter.Writers.HTMLWriter.RD – Module.

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1473-L1477
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L996-L1002
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1463-L1466
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1527-L1531
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1513-L1516
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L1480-L1482
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L768-L770
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L724-L726
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L788-L790

CHAPTER 17. INTERNALS 117

Provides a namespace for remote dependencies.

source

Documenter.Writers.HTMLWriter.RD.highlightjs! – Function.

Add the highlight.js dependencies and snippet to a RequireJS declaration.

source

Documenter.Writers.LaTeXWriter – Module.

A module for rendering Document objects to LaTeX and PDF.

Keywords

LaTeXWriter uses the following additional keyword arguments that can be passed to makedocs: authors,

sitename.

sitename is the site's title displayed in the title bar and at the top of the navigation menu. It goes into the

\title LaTeX command.

authors can be used to specify the authors of. It goes into the \author LaTeX command.

source

Documenter.Writers.LaTeXWriter.LaTeX – Type.

Documenter.LaTeX(; kwargs...)

Output format specifier that results in LaTeX/PDF output. Used together with makedocs, e.g.

makedocs(

format = Documenter.LaTeX()

)

The makedocs argument sitename will be used for the \title field in the tex document, and if the build

is for a release tag (i.e. when the "TRAVIS_TAG" environment variable is set) the version number will be

appended to the title. The makedocs argument authors should also be specified, it will be used for the

\authors field in the tex document.

Keyword arguments

platform sets the platform where the tex-file is compiled, either "native" (default), "docker", or "none"

which doesn't compile the tex.

See Other Output Formats for more information.

source

Documenter.Plugin – Type.

abstract type Plugin end

Any plugin that needs to either solicit user input or store information in a Documents.Document should

create a subtype of Plugin. The subtype, T <: Documenter.Plugin, must have an empty constructor

T() that initialized T with the appropriate default values.

To retrieve the values stored in T, the plugin can call Documents.getplugin. If T was passed to makedocs,

the passed type will be returned. Otherwise, a new T object will be created.

source

https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L433
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/HTMLWriter.jl#L463
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/LaTeXWriter.jl#L1-L14
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Writers/LaTeXWriter.jl#L18-L42
https://github.com/JuliaDocs/Documenter.jl/blob/c27df5c951a8dfd1f4f2afad8c13b60b32b94cf0/src/Documenter.jl#L20-L31

Part VI

Contributing

118

CHAPTER 17. INTERNALS 119

This page details the some of the guidelines that should be followed when contributing to this package.

Chapter 18

Branches

From Documenter version 0.3 onwards release-* branches are used for taggedminor versions of this package.

This follows the same approach used in the main Julia repository, albeit on a much more modest scale.

Please open pull requests against the master branch rather than any of the release-* branches whenever

possible.

18.1 Backports

Bug fixes are backported to the release-* branches using git cherry-pick -x by a JuliaDocs member and

will become available in point releases of that particular minor version of the package.

Feel free to nominate commits that should be backported by opening an issue. Requests for new point releases

to be tagged in METADATA.jl can also be made in the same way.

18.2 release-* branches

• Each new minor version x.y.0 gets a branch called release-x.y (a protected branch).

• New versions are usually tagged only from the release-x.y branches.

• For patch releases, changes get backported to the release-x.y branch via a single PR with the standard

name "Backports for x.y.z" and label "Type: Backport". The PR message links to all the PRs that are

providing commits to the backport. The PR gets merged as a merge commit (i.e. not squashed).

• The old release-* branches may be removed once they have outlived their usefulness.

• Patch version milestones are used to keep track of which PRs get backported etc.

120

https://docs.github.com/en/free-pro-team@latest/github/administering-a-repository/about-protected-branches
https://github.com/JuliaDocs/Documenter.jl/pulls?q=label%3A%22Type%3A+Backport%22
https://github.com/JuliaDocs/Documenter.jl/milestones

Chapter 19

Style Guide

Follow the style of the surrounding text when making changes. When adding new features please try to stick

to the following points whenever applicable.

19.1 Julia

• 4-space indentation;

• modules spanning entire files should not be indented, but modules that have surrounding code should;

• no blank lines at the start or end of files;

• do not manually align syntax such as = or :: over adjacent lines;

• use function ... end when a method definition contains more than one toplevel expression;

• related short-form method definitions don't need a new line between them;

• unrelated or long-form method definitions must have a blank line separating each one;

• surround all binary operators with whitespace except for ::, ^, and :;

• files containing a single module ... end must be named after the module;

• method arguments should be ordered based on the amount of usage within the method body;

• methods extended from other modules must follow their inherited argument order, not the above rule;

• explicit return should be preferred except in short-form method definitions;

• avoid dense expressions where possible e.g. prefer nested ifs over complex nested ?s;

• include a trailing , in vectors, tuples, or method calls that span several lines;

• do not use multiline comments (#= and =#);

• wrap long lines as near to 92 characters as possible, this includes docstrings;

• follow the standard naming conventions used in Base.

121

CHAPTER 19. STYLE GUIDE 122

19.2 Markdown

• Use unbalanced # headers, i.e. no # on the right hand side of the header text;

• include a single blank line between toplevel blocks;

• unordered lists must use * bullets with two preceding spaces;

• do not hard wrap lines;

• use emphasis (*) and bold (**) sparingly;

• always use fenced code blocks instead of indented blocks;

• follow the conventions outlined in the Julia documentation page on documentation.

	Contents
	Home
	Documenter.jl
	Package Features
	Manual Outline
	Library Outline

	Manual
	Guide
	Package Guide

	Examples
	Registered
	Documentation repositories

	Syntax
	@docs block
	@autodocs block
	@ref link
	@meta block
	@index block
	@contents block
	@example block
	@repl block
	@setup <name> block
	@eval block
	@raw <format> block

	Doctests
	"Script" Examples
	REPL Examples
	Exceptions
	Preserving Definitions Between Blocks
	Setup Code
	Filtering Doctests
	Doctesting as Part of Testing
	Fixing Outdated Doctests
	Skipping Doctests

	LaTeXSyntax
	Escaping Characters in Docstrings
	Inline Equations
	Display Equations

	Hosting Documentation
	Overview
	Travis CI
	GitHub Actions
	docs/Project.toml
	The deploydocs Function
	.gitignore
	gh-pages Branch
	Documentation Versions
	Deployment systems
	SSH Deploy Keys Walkthrough

	Other Output Formats
	PDF Output via LaTeX
	Markdown & MkDocs

	Showcase
	Table of contents
	Basic Markdown

	Heading 1
	Heading 2
	Heading 3
	Lists
	Tables
	Footnotes
	Headings
	Heading level 3

	Docstrings
	An index of docstrings
	Multiple uses of the same symbol

	Doctesting example
	Running interactive code
	REPL-type

	Doctest showcase

	Library
	Public
	Public Documentation

	Internals
	Anchors
	Builder
	CrossReferences
	DocChecks
	DocMeta
	DocSystem
	DocTests
	Documenter
	DocumenterTools
	Documents
	DOM
	Expanders
	Markdown2
	MDFlatten
	Selectors
	TextDiff
	Utilities
	Writers

	Contributing
	Branches
	Backports
	release-* branches

	Style Guide
	Julia
	Markdown

