Skip to content

Latest commit

 

History

History
53 lines (38 loc) · 2.4 KB

README.md

File metadata and controls

53 lines (38 loc) · 2.4 KB

HuggingFaceDatasets

Dev Build Status Coverage

HuggingFaceDatasets.jl is a non-official julia wrapper around the python package datasets from Hugging Face. datasets contains a large collection of machine learning datasets (see here for a list) that this package makes available to the julia ecosystem.

This package is built on top of PythonCall.jl.

Installation

HuggingFaceDatasets.jl is a registered Julia package. You can easily install it through the package manager:

pkg> add HuggingFaceDatasets

Usage

HuggingFaceDatasets.jl provides wrappers around types from the datasets python package (e.g. Dataset and DatasetDict) along with a few related methods.

Check out the examples/ folder for usage examples.

julia> train_data = load_dataset("mnist", split = "train")
Dataset({
    features: ['image', 'label'],
    num_rows: 60000
})

# Indexing starts with 1. 
# Python types are returned by default.
julia> train_data[1]
Python: {'image': <PIL.PngImagePlugin.PngImageFile image mode=L size=28x28 at 0x7F04DE661CD0>, 'label': 5}

julia> length(train_data)
60000

# Now we set the julia format
julia> train_data = load_dataset("mnist", split = "train").with_format("julia");

# Returned observations are now julia objects
julia> train_data[1]
Dict{String, Any} with 2 entries:
  "label" => 5
  "image" => Gray{N0f8}[Gray{N0f8}(0.0) Gray{N0f8}(0.0)  Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0)  Gray{N0f8}(0.0) Gray{N0f8}(0.0);  ; Gray{N0f8}(0.0) Gray{N0f8}(0.0) ……

julia> train_data[1:2]
Dict{String, Vector} with 2 entries:
  "label" => [5, 0]
  "image" => ReinterpretArray{Gray{N0f8}, 2, UInt8, Matrix{UInt8}, false}[[Gray{N0f8}(0.0) Gray{N0f8}(0.0)  Gray{N0f8}(0.0) Gray{N0f8}(0.0); Gray{N0f8}(0.0) Gray{N0f8}(0.0)  Gray{N0f8}(0.0) Gra