
DRAFT
UnROOT: an I/O library for the CERN ROOT file1

format written in Julia2

Tamás Gál1, 2, Jerry (Jiahong) Ling3, and Nick Amin4
3

1 Erlangen Centre for Astroparticle Physics 2 Friedrich-Alexander-Universität Erlangen-Nürnberg 34

Harvard University 4 University of California, Santa Barbara5

DOI: 10.21105/joss.0XXXX

Software
• Review
• Repository
• Archive

Editor: Editor Name

Submitted: 01 January XXXX
Published: 01 January XXXX

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary6

UnROOT.jl is a pure Julia implementation of CERN ROOT (Brun & Rademakers, 1997) files7

I/O (.root) that is fast, memory-efficient, and composes well with Julia’s high-performance8

iteration, array, and multi-threading interfaces.9

Statement of need10

The High-Energy Physics (HEP) community has been troubled by the two-language problem11

for a long time. Often, physicists would start prototyping with a Python front-end which12

glues to a C/C++/Fortran back-end. Soon they will hit a task which is extremely hard to13

express in columnar (i.e. “vectorized”) style, a type of problems which are normally tackled14

with libraries like numpy (Harris et al., 2020) or pandas (The pandas development team,15

2020). This usually leads to either writing C++ kernels and interface them with Python, or16

porting the prototype to C++ and start to maintain two code bases including the wrapper code.17

Both options are engineering challenges for physicists who usually have no or little background18

in software engineering. Many steps of this process are critical, like identifying bottlenecks,19

creating an architecture which is both performant and maintainable at the same time while20

still being user-friendly and logically structured. Using a Python front-end and dancing across21

language barriers also hinders the ability to parallelize tasks that are conceptually trivial most22

of the time.23

UnROOT.jl attempts to solve all of the above by choosing Julia, a high-performance language24

with simple and expressive syntax (Bezanson et al., 2017). Julia is designed to solve the two-25

language problem in general. This has been studied for HEP specifically as well (Stanitzki &26

Strube, 2021). Analysis software written in Julia can freely escape to a for-loop whenever27

vectorized-style processing is not flexible enough, without any performance degradation. At28

the same time, UnROOT.jl transparently supports multi-threading and multi-processing by29

simply providing data structures which are a subtype of AbstractArray, the built-in abstract30

type for array-like objects, which allows to interface with array-routines from other packages31

easily, thanks to multiple dispatch, one of the main features of Julia.32

Features and Functionality33

The ROOT dataformat is flexible and mostly self-descriptive. Users can define their own data34

structures (C++ classes) which derive from ROOT classes and serialise them into directories,35

trees and branches. The information about the deserialisation is written to the output file36

Mickey Mouse et al., (XXXX). UnROOT: an I/O library for the CERN ROOT file format written in Julia. , X(X), X. https://doi.org/10.21105/
joss.0XXXX

1

https://doi.org/10.21105/joss.0XXXX
https://github.com/JuliaHEP/UnROOT.jl
http://example.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.0XXXX
https://doi.org/10.21105/joss.0XXXX

DRAFT
(therefore: self-descriptive) but there are some basic structures and constants needed to37

bootstrap the parsing process. One of the biggest advantages of the ROOT data format is the38

ability to store jagged structures like nested arrays of structs with different sub-array lengths.39

In high-energy physics, such structures are preferred to resemble e.g. particle interactions and40

detector responses as signals from different hardware components, combined into a tree of41

events.42

UnROOT.jl understands the core structure of ROOT files, and is able to decompress and43

deserialize instances of the commonly used TH1, TH2, TDirectory, TTree etc. ROOT44

classes. All basic C++ types for TTree branches are supported as well, including their nested45

variants. Additionally, UnROOT.jl provides a way to hook into the deserialisation process of46

custom types where the automatic parsing fails. By the time of writing, UnROOT is already47

used successfully in the data analysis of the KM3NeT neutrino telescope (Adriá n-Martı́nez48

et al., 2016) and the CMS detector (Ehatäht, 2020).49

Opening and loading a TTree lazily – i.e. without reading the whole data into memory – is50

simple:51

julia> using UnROOT

julia> f = ROOTFile("test/samples/NanoAODv5_sample.root")
ROOTFile with 2 entries and 21 streamers.
test/samples/NanoAODv5_sample.root

Events
"run"
"luminosityBlock"
"event"
"HTXS_Higgs_pt"
"HTXS_Higgs_y"
...

julia> mytree = LazyTree(f, "Events", ["Electron_dxy", "nMuon", r"Muon_(pt|eta)$"])
Row Electron_dxy nMuon Muon_eta Muon_pt

Vector{Float32} UInt32 Vector{Float32} Vector{Float32}

1 [0.000371] 0 [] []
2 [-0.00982] 2 [0.53, 0.229] [19.9, 15.3]
3 [] 0 [] []
4 [-0.00157] 0 [] []

...

As seen in the above example, the entries in the columns are multi-dimensional and jagged.52

The LazyTree object acts as a table which suports sequential or parallel iteration, selections53

and filtering based on ranges or masks, and operations on whole columns:54

for event in mytree
... Operate on event

end

Threads.@threads for event in mytree # multi-threading
... Operate on event

end

mytree.Muon_pt # a column as a lazy vector of vectors

Mickey Mouse et al., (XXXX). UnROOT: an I/O library for the CERN ROOT file format written in Julia. , X(X), X. https://doi.org/10.21105/
joss.0XXXX

2

https://doi.org/10.21105/joss.0XXXX
https://doi.org/10.21105/joss.0XXXX

DRAFT
The LazyTree is designed as <: AbstractArray which makes it compose well with the rest of55

the Julia ecosystem. For example, syntactic loop fusion1 or Query-style tabular manipulations56

provided by packages like Query.jl2 without any additional code support just work out-of-57

the-box.58

Comparison with existing software59

This section focusses on the comparison with other existing ROOT I/O solutions in the Julia60

universe, however, one honorable mention is uproot (Pivarski et al., 2021), which is a purely61

Python-based ROOT I/O library and played (still plays) an important role for the development62

of UnROOT.jl as it is by the time of writing the most complete and best documented ROOT63

I/O implementation.64

• UpROOT.jl is a wrapper for the aforementioned uproot Python package and uses65

PyCall.jl3 as a bridge, which means that it relies on Python as a glue language.66

In addition to that, uproot itself utilises the C++ library AwkwardArray (Pivarski67

et al., 2018) to efficiently deal with jagged data in ROOT files. Most of the features68

of uproot are available in the Julia context, but there are intrinsic performance and69

usability drawbacks due to the three language architecture.70

• ROOT.jl4 is one of the oldest Julia ROOT packages. It uses C++ bindings to directly71

wrap the ROOT framework and therefore is not limited ot I/O. Unfortunately, the Cxx.jl572

package which is used to generate the C++ glue code does not support Julia 1.4 or73

later. The multi-threaded features are also limited.74

Conclusion75

UnROOT.jl is an important package in high-energy physics and related scientific fields where76

the ROOT dataformat is established, since the ability to read and parse scientific data is77

certainly the first mandatory step to open the window to a programming language and its78

package ecosystem. UnROOT.jl has demonstrated tree processing speeds at the same level79

as the C++ ROOT framework in per-event iteration as well as the Python-based uproot library80

in chunked iteration.81

References82

Adriá n-Martı́nez, S., Ageron, M., Aharonian, F., Aiello, S., Albert, A., Ameli, F., Anassontzis,83

E., Andre, M., Androulakis, G., Anghinolfi, M., Anton, G., Ardid, M., Avgitas, T., Bar-84

barino, G., Barbarito, E., Baret, B., Barrios-Martı́, J., Belhorma, B., Belias, A., … Zúñiga,85

J. (2016). Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle86

Physics, 43(8), 084001. https://doi.org/10.1088/0954-3899/43/8/08400187

Bezanson, Jeff., Edelman, Alan., Karpinski, Stefan., & Shah, V. B. (2017). Julia: A fresh88

approach to numerical computing. SIAM Review, 59(1), 65–98. https://doi.org/10.1137/89

14100067190

1https://julialang.org/blog/2017/01/moredots/
2https://github.com/queryverse/Query.jl
3https://github.com/JuliaPy/PyCall.jl
4https://github.com/JuliaHEP/ROOT.jl
5https://github.com/JuliaInterop/Cxx.jl

Mickey Mouse et al., (XXXX). UnROOT: an I/O library for the CERN ROOT file format written in Julia. , X(X), X. https://doi.org/10.21105/
joss.0XXXX

3

https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://julialang.org/blog/2017/01/moredots/
https://github.com/queryverse/Query.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaHEP/ROOT.jl
https://github.com/JuliaInterop/Cxx.jl
https://doi.org/10.21105/joss.0XXXX
https://doi.org/10.21105/joss.0XXXX

DRAFT
Brun, R., & Rademakers, F. (1997). ROOT: An object oriented data analysis framework.91

Nucl. Instrum. Meth. A, 389, 81–86. https://doi.org/10.1016/S0168-9002(97)00048-X92

Ehatäht, K. (2020). NANOAOD: a new compact event data format in CMS. EPJ Web Conf.,93

245, 06002. https://doi.org/10.1051/epjconf/20202450600294

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau,95

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,96

M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,97

T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:98

//doi.org/10.1038/s41586-020-2649-299

Pivarski, J., Osborne, I., Ifrim, I., Schreiner, H., Hollands, A., Biswas, A., Das, P., Roy100

Choudhury, S., & Smith, N. (2018). Awkward array (Version 1.9.0rc4) [Computer soft-101

ware]. Zenodo. https://doi.org/10.5281/zenodo.6522027102

Pivarski, J., Schreiner, H., Smith, N., Burr, C., Kalinkin, D., Stark, G., Hartmann, N., Davis,103

D., O’Neil, R., Novak, A., Greiner, B., Stanislaus, B., ChristopheRappold, Deaconu, C.,104

Cervenkov, D., Rübenach, J., Bendavid, J., Lieret, K., Peresano, M., … Held, A. (2021).105

Scikit-hep/uproot4: 4.1.3 (Version 4.1.3) [Computer software]. Zenodo. https://doi.org/106

10.5281/zenodo.5539722107

Stanitzki, M., & Strube, J. (2021). Performance of julia for high energy physics analyses.108

Computing and Software for Big Science, 5(1), 1–11.109

The pandas development team. (2020). Pandas (latest) [Computer software]. Zenodo.110

https://doi.org/10.5281/zenodo.3509134111

Mickey Mouse et al., (XXXX). UnROOT: an I/O library for the CERN ROOT file format written in Julia. , X(X), X. https://doi.org/10.21105/
joss.0XXXX

4

https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1051/epjconf/202024506002
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.6522027
https://doi.org/10.5281/zenodo.5539722
https://doi.org/10.5281/zenodo.5539722
https://doi.org/10.5281/zenodo.5539722
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.21105/joss.0XXXX
https://doi.org/10.21105/joss.0XXXX

	Summary
	Statement of need
	Features and Functionality
	Comparison with existing software
	Conclusion
	References

