diff --git a/ext/IntervalArithmeticLinearAlgebraExt.jl b/ext/IntervalArithmeticLinearAlgebraExt.jl index a7be8b97..15d9d598 100644 --- a/ext/IntervalArithmeticLinearAlgebraExt.jl +++ b/ext/IntervalArithmeticLinearAlgebraExt.jl @@ -7,4 +7,427 @@ IntervalArithmetic.interval(::Type{T}, J::UniformScaling, d::IntervalArithmetic. IntervalArithmetic.interval(J::UniformScaling, d::IntervalArithmetic.Decoration = com; format::Symbol = :infsup) = UniformScaling(interval(J.λ, d; format = format)) +# by-pass generic `opnorm` from LinearAlgebra to prevent NG flag + +function LinearAlgebra.opnorm1(A::AbstractMatrix{T}) where {T<:RealOrComplexI} + LinearAlgebra.require_one_based_indexing(A) + m, n = size(A) + Tnorm = typeof(float(real(zero(T)))) + Tsum = promote_type(Float64, Tnorm) + nrm = zero(Tsum) + @inbounds begin + for j = 1:n + nrmj = zero(Tsum) + for i = 1:m + nrmj += norm(A[i,j]) + end + nrm = max(nrm, nrmj) + end + end + return convert(Tnorm, nrm) +end + +function LinearAlgebra.opnormInf(A::AbstractMatrix{T}) where {T<:RealOrComplexI} + LinearAlgebra.require_one_based_indexing(A) + m, n = size(A) + Tnorm = typeof(float(real(zero(T)))) + Tsum = promote_type(Float64, Tnorm) + nrm = zero(Tsum) + @inbounds begin + for i = 1:m + nrmi = zero(Tsum) + for j = 1:n + nrmi += norm(A[i,j]) + end + nrm = max(nrm, nrmi) + end + end + return convert(Tnorm, nrm) +end + +# convenient function to propagate NG flag + +function _ensure_ng_flag!(C::AbstractVecOrMat{<:Interval}, ng_flag::Bool) + C .= IntervalArithmetic._unsafe_interval.(getfield.(C, :bareinterval), decoration.(C), ng_flag) + return C +end + +function _ensure_ng_flag!(C::AbstractVecOrMat{<:Complex{<:Interval}}, ng_flag::Bool) + C .= complex.( + IntervalArithmetic._unsafe_interval.(getfield.(real.(C), :bareinterval), decoration.(C), ng_flag), + IntervalArithmetic._unsafe_interval.(getfield.(imag.(C), :bareinterval), decoration.(C), ng_flag) + ) + return C +end + +# matrix inversion +# Note: use the contraction mapping theorem, only works when the entries of A have small radii + +function Base.inv(A::Matrix{<:RealOrComplexI}) + mid_A = mid.(A) + approx_A⁻¹ = interval(inv(mid_A)) + F = A * approx_A⁻¹ - I + Y = opnorm(approx_A⁻¹ * F, Inf) + Z₁ = opnorm(F, Inf) + if isbounded(Y) & strictprecedes(Z₁, one(one(Z₁))) + A⁻¹ = interval.(approx_A⁻¹, inf(interval(mag(Y)) / (one(Z₁) - interval(mag(Z₁)))); format = :midpoint) + else + A⁻¹ = fill(nai(eltype(approx_A⁻¹)), size(A)) + end + _ensure_ng_flag!(A⁻¹, all(isguaranteed, A)) + return A⁻¹ +end + +# fast matrix multiplication +# Note: Rump's algorithm + +function Base.:*(A::AbstractMatrix{<:RealOrComplexI}, B::AbstractMatrix{<:RealOrComplexI}) + T = promote_type(eltype(A), eltype(B)) + C = zeros(T, size(A, 1), size(B, 2)) + return mul!(C, A, B, one(T), zero(T)) +end +function Base.:*(A::AbstractMatrix{<:RealOrComplexI}, B::AbstractVector{<:RealOrComplexI}) + T = promote_type(eltype(A), eltype(B)) + C = zeros(T, size(A, 1)) + return mul!(C, A, B, one(T), zero(T)) +end + +function Base.:*(A::AbstractMatrix{<:RealOrComplexI}, B::AbstractMatrix) + T = promote_type(eltype(A), eltype(B)) + C = zeros(T, size(A, 1), size(B, 2)) + return mul!(C, A, B, one(T), zero(T)) +end +function Base.:*(A::AbstractMatrix{<:RealOrComplexI}, B::AbstractVector) + T = promote_type(eltype(A), eltype(B)) + C = zeros(T, size(A, 1)) + return mul!(C, A, B, one(T), zero(T)) +end + +function Base.:*(A::AbstractMatrix, B::AbstractMatrix{<:RealOrComplexI}) + T = promote_type(eltype(A), eltype(B)) + C = zeros(T, size(A, 1), size(B, 2)) + return mul!(C, A, B, one(T), zero(T)) +end +function Base.:*(A::AbstractMatrix, B::AbstractVector{<:RealOrComplexI}) + T = promote_type(eltype(A), eltype(B)) + C = zeros(T, size(A, 1)) + return mul!(C, A, B, one(T), zero(T)) +end + +LinearAlgebra.mul!(C::AbstractVecOrMat{<:RealOrComplexI}, A::AbstractMatrix{<:RealOrComplexI}, B::AbstractVecOrMat{<:RealOrComplexI}, α::Number, β::Number) = + _mul!(C, A, B, α, β) + +LinearAlgebra.mul!(C::AbstractVecOrMat{<:RealOrComplexI}, A::AbstractMatrix, B::AbstractVecOrMat{<:RealOrComplexI}, α::Number, β::Number) = + _mul!(C, A, B, α, β) + +LinearAlgebra.mul!(C::AbstractVecOrMat{<:RealOrComplexI}, A::AbstractMatrix{<:RealOrComplexI}, B::AbstractVecOrMat, α::Number, β::Number) = + _mul!(C, A, B, α, β) + +for (T, S) ∈ ((:Interval, :Interval), (:Interval, :Any), (:Any, :Interval)) + @eval function _mul!(C, A::AbstractMatrix{<:$T}, B::AbstractVecOrMat{<:$S}, α, β) + CoefType = eltype(C) + if iszero(α) + if iszero(β) + C .= zero(CoefType) + elseif !isone(β) + C .*= β + end + else + BoundType = IntervalArithmetic.numtype(CoefType) + ABinf, ABsup = __mul(A, B) + if isone(α) + if iszero(β) + C .= interval.(BoundType, ABinf, ABsup) + elseif isone(β) + C .+= interval.(BoundType, ABinf, ABsup) + else + C .= interval.(BoundType, ABinf, ABsup) .+ C .* β + end + else + if iszero(β) + C .= interval.(BoundType, ABinf, ABsup) .* α + elseif isone(β) + C .+= interval.(BoundType, ABinf, ABsup) .* α + else + C .= interval.(BoundType, ABinf, ABsup) .* α .+ C .* β + end + end + end + t = all(isguaranteed, A) & all(isguaranteed, B) & isguaranteed(α) & isguaranteed(β) + _ensure_ng_flag!(C, t) + return C + end +end + +for (T, S) ∈ ((:(Complex{<:Interval}), :(Complex{<:Interval})), + (:(Complex{<:Interval}), :Complex), (:Complex, :(Complex{<:Interval}))) + @eval function _mul!(C, A::AbstractMatrix{<:$T}, B::AbstractVecOrMat{<:$S}, α, β) + CoefType = eltype(C) + if iszero(α) + if iszero(β) + C .= zero(CoefType) + elseif !isone(β) + C .*= β + end + else + BoundType = IntervalArithmetic.numtype(CoefType) + A_real, A_imag = reim(A) + B_real, B_imag = reim(B) + ABinf_1, ABsup_1 = __mul(A_real, B_real) + ABinf_2, ABsup_2 = __mul(A_imag, B_imag) + ABinf_3, ABsup_3 = __mul(A_real, B_imag) + ABinf_4, ABsup_4 = __mul(A_imag, B_real) + if isone(α) + if iszero(β) + C .= complex.(interval.(BoundType, ABinf_1, ABsup_1) .- interval.(BoundType, ABinf_2, ABsup_2), + interval.(BoundType, ABinf_3, ABsup_3) .+ interval.(BoundType, ABinf_4, ABsup_4)) + elseif isone(β) + C .+= complex.(interval.(BoundType, ABinf_1, ABsup_1) .- interval.(BoundType, ABinf_2, ABsup_2), + interval.(BoundType, ABinf_3, ABsup_3) .+ interval.(BoundType, ABinf_4, ABsup_4)) + else + C .= complex.(interval.(BoundType, ABinf_1, ABsup_1) .- interval.(BoundType, ABinf_2, ABsup_2), + interval.(BoundType, ABinf_3, ABsup_3) .+ interval.(BoundType, ABinf_4, ABsup_4)) .+ C .* β + end + else + if iszero(β) + C .= complex.(interval.(BoundType, ABinf_1, ABsup_1) .- interval.(BoundType, ABinf_2, ABsup_2), + interval.(BoundType, ABinf_3, ABsup_3) .+ interval.(BoundType, ABinf_4, ABsup_4)) .* α + elseif isone(β) + C .+= complex.(interval.(BoundType, ABinf_1, ABsup_1) .- interval.(BoundType, ABinf_2, ABsup_2), + interval.(BoundType, ABinf_3, ABsup_3) .+ interval.(BoundType, ABinf_4, ABsup_4)) .* α + else + C .= complex.(interval.(BoundType, ABinf_1, ABsup_1) .- interval.(BoundType, ABinf_2, ABsup_2), + interval.(BoundType, ABinf_3, ABsup_3) .+ interval.(BoundType, ABinf_4, ABsup_4)) .* α .+ C .* β + end + end + end + t = all(isguaranteed, A) & all(isguaranteed, B) & isguaranteed(α) & isguaranteed(β) + _ensure_ng_flag!(C, t) + return C + end +end + +for (T, S) ∈ ((:(Complex{<:Interval}), :Interval), (:(Complex{<:Interval}), :Any), (:Complex, :Interval)) + @eval begin + function _mul!(C, A::AbstractMatrix{<:$T}, B::AbstractVecOrMat{<:$S}, α, β) + CoefType = eltype(C) + if iszero(α) + if iszero(β) + C .= zero(CoefType) + elseif !isone(β) + C .*= β + end + else + BoundType = IntervalArithmetic.numtype(CoefType) + A_real, A_imag = reim(A) + ABinf_real, ABsup_real = __mul(A_real, B) + ABinf_imag, ABsup_imag = __mul(A_imag, B) + if isone(α) + if iszero(β) + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) + elseif isone(β) + C .+= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) + else + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .+ C .* β + end + else + if iszero(β) + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .* α + elseif isone(β) + C .+= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .* α + else + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .* α .+ C .* β + end + end + end + t = all(isguaranteed, A) & all(isguaranteed, B) & isguaranteed(α) & isguaranteed(β) + _ensure_ng_flag!(C, t) + return C + end + + function _mul!(C, A::AbstractMatrix{<:$S}, B::AbstractVecOrMat{<:$T}, α, β) + CoefType = eltype(C) + if iszero(α) + if iszero(β) + C .= zero(CoefType) + elseif !isone(β) + C .*= β + end + else + BoundType = IntervalArithmetic.numtype(CoefType) + B_real, B_imag = reim(B) + ABinf_real, ABsup_real = __mul(A, B_real) + ABinf_imag, ABsup_imag = __mul(A, B_imag) + if isone(α) + if iszero(β) + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) + elseif isone(β) + C .+= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) + else + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .+ C .* β + end + else + if iszero(β) + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .* α + elseif isone(β) + C .+= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .* α + else + C .= complex.(interval.(BoundType, ABinf_real, ABsup_real), interval.(BoundType, ABinf_imag, ABsup_imag)) .* α .+ C .* β + end + end + end + t = all(isguaranteed, A) & all(isguaranteed, B) & isguaranteed(α) & isguaranteed(β) + _ensure_ng_flag!(C, t) + return C + end + end +end + +__mul(A::AbstractMatrix{<:Interval{<:Rational}}, B::AbstractVecOrMat{<:Interval{<:Rational}}) = A * B + +function __mul(A::AbstractMatrix{T}, B::AbstractVecOrMat{S}) where {T,S} + NewType = IntervalArithmetic.promote_numtype(T, S) + return __mul(interval.(NewType, A), interval.(NewType, B)) +end + +function __mul(A::AbstractMatrix{Interval{T}}, B::AbstractMatrix{Interval{T}}) where {T<:AbstractFloat} + mA = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(A), sup.(A), RoundUp), convert(T, 2), RoundUp) # (inf.(A) .+ sup.(A)) ./ 2 + rA = IntervalArithmetic._sub_round.(mA, inf.(A), RoundUp) + mB = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(B), sup.(B), RoundUp), convert(T, 2), RoundUp) # (inf.(B) .+ sup.(B)) ./ 2 + rB = IntervalArithmetic._sub_round.(mB, inf.(B), RoundUp) + + Cinf = zeros(T, size(A, 1), size(B, 2)) + Csup = zeros(T, size(A, 1), size(B, 2)) + + Threads.@threads for j ∈ axes(B, 2) + for l ∈ axes(A, 2) + @inbounds for i ∈ axes(A, 1) + U_ij = IntervalArithmetic._mul_round(abs(mA[i,l]), rB[l,j], RoundUp) + V_ij = IntervalArithmetic._mul_round(rA[i,l], IntervalArithmetic._add_round(abs(mB[l,j]), rB[l,j], RoundUp), RoundUp) + rC_ij = IntervalArithmetic._add_round(U_ij, V_ij, RoundUp) + mAmB_up_ij = IntervalArithmetic._mul_round(mA[i,l], mB[l,j], RoundUp) + mAmB_down_ij = IntervalArithmetic._mul_round(mA[i,l], mB[l,j], RoundDown) + + Cinf[i,j] = IntervalArithmetic._add_round(IntervalArithmetic._sub_round(mAmB_down_ij, rC_ij, RoundDown), Cinf[i,j], RoundDown) + Csup[i,j] = IntervalArithmetic._add_round(IntervalArithmetic._add_round(mAmB_up_ij, rC_ij, RoundUp), Csup[i,j], RoundUp) + end + end + end + + return Cinf, Csup +end + +function __mul(A::AbstractMatrix{Interval{T}}, B::AbstractMatrix{T}) where {T<:AbstractFloat} + mA = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(A), sup.(A), RoundUp), convert(T, 2), RoundUp) # (inf.(A) .+ sup.(A)) ./ 2 + rA = IntervalArithmetic._sub_round.(mA, inf.(A), RoundUp) + + Cinf = zeros(T, size(A, 1), size(B, 2)) + Csup = zeros(T, size(A, 1), size(B, 2)) + + Threads.@threads for j ∈ axes(B, 2) + for l ∈ axes(A, 2) + @inbounds for i ∈ axes(A, 1) + rC_ij = IntervalArithmetic._mul_round(rA[i,l], abs(B[l,j]), RoundUp) + mAmB_up_ij = IntervalArithmetic._mul_round(mA[i,l], B[l,j], RoundUp) + mAmB_down_ij = IntervalArithmetic._mul_round(mA[i,l], B[l,j], RoundDown) + + Cinf[i,j] = IntervalArithmetic._add_round(IntervalArithmetic._sub_round(mAmB_down_ij, rC_ij, RoundDown), Cinf[i,j], RoundDown) + Csup[i,j] = IntervalArithmetic._add_round(IntervalArithmetic._add_round(mAmB_up_ij, rC_ij, RoundUp), Csup[i,j], RoundUp) + end + end + end + + return Cinf, Csup +end + +function __mul(A::AbstractMatrix{T}, B::AbstractMatrix{Interval{T}}) where {T<:AbstractFloat} + mB = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(B), sup.(B), RoundUp), convert(T, 2), RoundUp) # (inf.(B) .+ sup.(B)) ./ 2 + rB = IntervalArithmetic._sub_round.(mB, inf.(B), RoundUp) + + Cinf = zeros(T, size(A, 1), size(B, 2)) + Csup = zeros(T, size(A, 1), size(B, 2)) + + Threads.@threads for j ∈ axes(B, 2) + for l ∈ axes(A, 2) + @inbounds for i ∈ axes(A, 1) + rC_ij = IntervalArithmetic._mul_round(abs(A[i,l]), rB[l,j], RoundUp) + mAmB_up_ij = IntervalArithmetic._mul_round(A[i,l], mB[l,j], RoundUp) + mAmB_down_ij = IntervalArithmetic._mul_round(A[i,l], mB[l,j], RoundDown) + + Cinf[i,j] = IntervalArithmetic._add_round(IntervalArithmetic._sub_round(mAmB_down_ij, rC_ij, RoundDown), Cinf[i,j], RoundDown) + Csup[i,j] = IntervalArithmetic._add_round(IntervalArithmetic._add_round(mAmB_up_ij, rC_ij, RoundUp), Csup[i,j], RoundUp) + end + end + end + + return Cinf, Csup +end + +function __mul(A::AbstractMatrix{Interval{T}}, B::AbstractVector{Interval{T}}) where {T<:AbstractFloat} + mA = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(A), sup.(A), RoundUp), convert(T, 2), RoundUp) # (inf.(A) .+ sup.(A)) ./ 2 + rA = IntervalArithmetic._sub_round.(mA, inf.(A), RoundUp) + mB = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(B), sup.(B), RoundUp), convert(T, 2), RoundUp) # (inf.(B) .+ sup.(B)) ./ 2 + rB = IntervalArithmetic._sub_round.(mB, inf.(B), RoundUp) + + Cinf = zeros(T, size(A, 1)) + Csup = zeros(T, size(A, 1)) + + Threads.@threads for i ∈ axes(A, 1) + @inbounds for l ∈ axes(A, 2) + U_il = IntervalArithmetic._mul_round(abs(mA[i,l]), rB[l], RoundUp) + V_il = IntervalArithmetic._mul_round(rA[i,l], IntervalArithmetic._add_round(abs(mB[l]), rB[l], RoundUp), RoundUp) + rC_il = IntervalArithmetic._add_round(U_il, V_il, RoundUp) + mAmB_up_il = IntervalArithmetic._mul_round(mA[i,l], mB[l], RoundUp) + mAmB_down_il = IntervalArithmetic._mul_round(mA[i,l], mB[l], RoundDown) + + Cinf[i] = IntervalArithmetic._add_round(IntervalArithmetic._sub_round(mAmB_down_il, rC_il, RoundDown), Cinf[i], RoundDown) + Csup[i] = IntervalArithmetic._add_round(IntervalArithmetic._add_round(mAmB_up_il, rC_il, RoundUp), Csup[i], RoundUp) + end + end + + return Cinf, Csup +end + +function __mul(A::AbstractMatrix{Interval{T}}, B::AbstractVector{T}) where {T<:AbstractFloat} + mA = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(A), sup.(A), RoundUp), convert(T, 2), RoundUp) # (inf.(A) .+ sup.(A)) ./ 2 + rA = IntervalArithmetic._sub_round.(mA, inf.(A), RoundUp) + + Cinf = zeros(T, size(A, 1)) + Csup = zeros(T, size(A, 1)) + + Threads.@threads for i ∈ axes(A, 1) + @inbounds for l ∈ axes(A, 2) + rC_il = IntervalArithmetic._mul_round(rA[i,l], abs(B[l]), RoundUp) + mAB_up_il = IntervalArithmetic._mul_round(mA[i,l], B[l], RoundUp) + mAB_down_il = IntervalArithmetic._mul_round(mA[i,l], B[l], RoundDown) + + Cinf[i] = IntervalArithmetic._add_round(IntervalArithmetic._sub_round(mAB_down_il, rC_il, RoundDown), Cinf[i], RoundDown) + Csup[i] = IntervalArithmetic._add_round(IntervalArithmetic._add_round(mAB_up_il, rC_il, RoundUp), Csup[i], RoundUp) + end + end + + return Cinf, Csup +end + +function __mul(A::AbstractMatrix{T}, B::AbstractVector{Interval{T}}) where {T<:AbstractFloat} + mB = IntervalArithmetic._div_round.(IntervalArithmetic._add_round.(inf.(B), sup.(B), RoundUp), convert(T, 2), RoundUp) # (inf.(B) .+ sup.(B)) ./ 2 + rB = IntervalArithmetic._sub_round.(mB, inf.(B), RoundUp) + + Cinf = zeros(T, size(A, 1)) + Csup = zeros(T, size(A, 1)) + + Threads.@threads for i ∈ axes(A, 1) + @inbounds for l ∈ axes(A, 2) + rC_il = IntervalArithmetic._mul_round(abs(A[i,l]), rB[l], RoundUp) + AmB_up_il = IntervalArithmetic._mul_round(A[i,l], mB[l], RoundUp) + AmB_down_il = IntervalArithmetic._mul_round(A[i,l], mB[l], RoundDown) + + Cinf[i] = IntervalArithmetic._add_round(IntervalArithmetic._sub_round(AmB_down_il, rC_il, RoundDown), Cinf[i], RoundDown) + Csup[i] = IntervalArithmetic._add_round(IntervalArithmetic._add_round(AmB_up_il, rC_il, RoundUp), Csup[i], RoundUp) + end + end + + return Cinf, Csup +end + end diff --git a/test/Project.toml b/test/Project.toml index 70dd3a83..5ddc09e4 100644 --- a/test/Project.toml +++ b/test/Project.toml @@ -2,4 +2,5 @@ ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240" IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" +LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" diff --git a/test/interval_tests/linearalgebra.jl b/test/interval_tests/linearalgebra.jl new file mode 100644 index 00000000..3ed90c0e --- /dev/null +++ b/test/interval_tests/linearalgebra.jl @@ -0,0 +1,21 @@ +import LinearAlgebra + +@testset "Matrix inversion" begin + A = [interval(2) interval(1, 2) ; interval(0) interval(1)] + @test all(isequal_interval.(inv(A), [interval(0, 1) interval(-1.25, -0.25) ; interval(-0.5, 0.5) interval(0.5, 1.5)])) + B = [interval(2) interval(1, 2) ; interval(0) interval(0, 1)] + @test all(isnai, inv(B)) +end + +@testset "Matrix multiplication" begin + A = [interval(2, 4) interval(-2, 1) ; interval(-1, 2) interval(2, 4)] + imA = interval(im) * A + + @test all(isequal_interval.(A * A, [interval(-2, 19.5) interval(-16, 10) ; interval(-10, 16) interval(-2, 19.5)])) + @test all(isequal_interval.(A * mid.(A), [interval(5, 12.5) interval(-8, 2) ; interval(-2, 8) interval(5, 12.5)])) + @test all(isequal_interval.(mid.(A) * A, [interval(5, 12.5) interval(-8, 2) ; interval(-2, 8) interval(5, 12.5)])) + + @test all(isequal_interval.(imA * imA, -[interval(-2, 19.5) interval(-16, 10) ; interval(-10, 16) interval(-2, 19.5)])) + @test all(isequal_interval.(mid.(A) * imA, interval(im)*[interval(5, 12.5) interval(-8, 2) ; interval(-2, 8) interval(5, 12.5)])) + @test all(isequal_interval.(imA * mid.(A), interval(im)*[interval(5, 12.5) interval(-8, 2) ; interval(-2, 8) interval(5, 12.5)])) +end