-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
twiceprecision.jl
520 lines (457 loc) · 20.3 KB
/
twiceprecision.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# This file is a part of Julia. License is MIT: https://julialang.org/license
# Twice-precision arithmetic.
# Necessary for creating nicely-behaved ranges like r = 0.1:0.1:0.3
# that return r[3] == 0.3. Otherwise, we have roundoff error due to
# 0.1 + 2*0.1 = 0.30000000000000004
"""
TwicePrecision{T}(hi::T, lo::T)
TwicePrecision{T}((num, denom))
A number with twice the precision of `T`, e.g., quad-precision if `T =
Float64`. `hi` represents the high bits (most significant bits) and
`lo` the low bits (least significant bits). Rational values
`num//denom` can be approximated conveniently using the syntax
`TwicePrecision{T}((num, denom))`.
When used with `T<:AbstractFloat` to construct an exact
`StepRangeLen`, `ref` should be the range element with smallest
magnitude and `offset` set to the corresponding index. For
efficiency, multiplication of `step` by the index is not performed at
twice precision: `step.hi` should have enough trailing zeros in its
`bits` representation that `(0:len-1)*step.hi` is exact (has no
roundoff error). If `step` has an exact rational representation
`num//denom`, then you can construct `step` using
step = TwicePrecision{T}((num, denom), nb)
where `nb` is the number of trailing zero bits of `step.hi`. For
ranges, you can set `nb = ceil(Int, log2(len-1))`.
"""
struct TwicePrecision{T}
hi::T # most significant bits
lo::T # least significant bits
end
function TwicePrecision{T}(nd::Tuple{I,I}) where {T,I}
n, d = nd
TwicePrecision{T}(n, zero(T)) / d
end
function TwicePrecision{T}(nd::Tuple{I,I}, nb::Integer) where {T,I}
twiceprecision(TwicePrecision{T}(nd), nb)
end
function twiceprecision(val::T, nb::Integer) where T<:Number
hi = truncbits(val, nb)
TwicePrecision{T}(hi, val - hi)
end
function twiceprecision(val::TwicePrecision{T}, nb::Integer) where T<:Number
hi = truncbits(val.hi, nb)
TwicePrecision{T}(hi, (val.hi - hi) + val.lo)
end
nbitslen(r::StepRangeLen) = nbitslen(eltype(r), length(r), r.offset)
nbitslen(::Type{Float64}, len, offset) = min(26, nbitslen(len, offset))
nbitslen(::Type{Float32}, len, offset) = min(12, nbitslen(len, offset))
nbitslen(::Type{Float16}, len, offset) = min(5, nbitslen(len, offset))
nbitslen(len, offset) = len < 2 ? 0 : ceil(Int, log2(max(offset-1, len-offset)))
eltype(::Type{TwicePrecision{T}}) where {T} = T
promote_rule(::Type{TwicePrecision{R}}, ::Type{TwicePrecision{S}}) where {R,S} =
TwicePrecision{promote_type(R,S)}
promote_rule(::Type{TwicePrecision{R}}, ::Type{S}) where {R,S} =
TwicePrecision{promote_type(R,S)}
convert(::Type{TwicePrecision{T}}, x::TwicePrecision{T}) where {T} = x
convert(::Type{TwicePrecision{T}}, x::TwicePrecision) where {T} =
TwicePrecision{T}(convert(T, x.hi), convert(T, x.lo))
convert(::Type{T}, x::TwicePrecision) where {T<:Number} = convert(T, x.hi + x.lo)
convert(::Type{TwicePrecision{T}}, x::Number) where {T} = TwicePrecision{T}(convert(T, x), zero(T))
float(x::TwicePrecision{<:AbstractFloat}) = x
float(x::TwicePrecision) = TwicePrecision(float(x.hi), float(x.lo))
big(x::TwicePrecision) = big(x.hi) + big(x.lo)
-(x::TwicePrecision) = TwicePrecision(-x.hi, -x.lo)
zero(::Type{TwicePrecision{T}}) where {T} = TwicePrecision{T}(0, 0)
## StepRangeLen
# If using TwicePrecision numbers, deliberately force user to specify offset
StepRangeLen(ref::TwicePrecision{T}, step::TwicePrecision{T}, len::Integer, offset::Integer) where {T} =
StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}(ref, step, len, offset)
# Construct range for rational start=start_n/den, step=step_n/den
function floatrange(::Type{T}, start_n::Integer, step_n::Integer, len::Integer, den::Integer) where T
if len < 2
return StepRangeLen(TwicePrecision{T}((start_n, den)),
TwicePrecision{T}((step_n, den)), Int(len), 1)
end
# index of smallest-magnitude value
imin = clamp(round(Int, -start_n/step_n+1), 1, Int(len))
# Compute smallest-magnitude element to 2x precision
ref_n = start_n+(imin-1)*step_n # this shouldn't overflow, so don't check
nb = nbitslen(T, len, imin)
StepRangeLen(TwicePrecision{T}((ref_n, den)),
TwicePrecision{T}((step_n, den), nb), Int(len), imin)
end
function floatrange(a::AbstractFloat, st::AbstractFloat, len::Real, divisor::AbstractFloat)
T = promote_type(typeof(a), typeof(st), typeof(divisor))
m = maxintfloat(T, Int)
if abs(a) <= m && abs(st) <= m && abs(divisor) <= m
ia, ist, idivisor = round(Int, a), round(Int, st), round(Int, divisor)
if ia == a && ist == st && idivisor == divisor
# We can return the high-precision range
return floatrange(T, ia, ist, Int(len), idivisor)
end
end
# Fallback (misses the opportunity to set offset different from 1,
# but otherwise this is still high-precision)
StepRangeLen(TwicePrecision{T}((a,divisor)),
TwicePrecision{T}((st,divisor), nbitslen(T, len, 1)), Int(len), 1)
end
function colon(start::T, step::T, stop::T) where T<:Union{Float16,Float32,Float64}
step == 0 && throw(ArgumentError("range step cannot be zero"))
# see if the inputs have exact rational approximations (and if so,
# perform all computations in terms of the rationals)
step_n, step_d = rat(step)
if step_d != 0 && T(step_n/step_d) == step
start_n, start_d = rat(start)
stop_n, stop_d = rat(stop)
if start_d != 0 && stop_d != 0 &&
T(start_n/start_d) == start && T(stop_n/stop_d) == stop
den = lcm(start_d, step_d) # use same denominator for start and step
m = maxintfloat(T, Int)
if den != 0 && abs(start*den) <= m && abs(step*den) <= m && # will round succeed?
rem(den, start_d) == 0 && rem(den, step_d) == 0 # check lcm overflow
start_n = round(Int, start*den)
step_n = round(Int, step*den)
len = max(0, div(den*stop_n - stop_d*start_n + step_n*stop_d, step_n*stop_d))
# Integer ops could overflow, so check that this makes sense
if isbetween(start, start + (len-1)*step, stop + step/2) &&
!isbetween(start, start + len*step, stop)
# Return a 2x precision range
return floatrange(T, start_n, step_n, len, den)
end
end
end
end
# Fallback, taking start and step literally
lf = (stop-start)/step
if lf < 0
len = 0
elseif lf == 0
len = 1
else
len = round(Int, lf) + 1
stop′ = start + (len-1)*step
# if we've overshot the end, subtract one:
len -= (start < stop < stop′) + (start > stop > stop′)
end
StepRangeLen(TwicePrecision(start, zero(T)), twiceprecision(step, nbitslen(T, len, 1)), len)
end
function range(a::T, st::T, len::Integer) where T<:Union{Float16,Float32,Float64}
start_n, start_d = rat(a)
step_n, step_d = rat(st)
if start_d != 0 && step_d != 0 &&
T(start_n/start_d) == a && T(step_n/step_d) == st
den = lcm(start_d, step_d)
m = maxintfloat(T, Int)
if abs(den*a) <= m && abs(den*st) <= m &&
rem(den, start_d) == 0 && rem(den, step_d) == 0
start_n = round(Int, den*a)
step_n = round(Int, den*st)
return floatrange(T, start_n, step_n, len, den)
end
end
StepRangeLen(TwicePrecision(a, zero(T)), TwicePrecision(st, zero(T)), len)
end
step(r::StepRangeLen{T,R,S}) where {T,R,S<:TwicePrecision} = convert(eltype(S), r.step)
start(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}) = 1
done(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}, i::Int) = length(r) < i
function next(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}, i::Int)
@_inline_meta
unsafe_getindex(r, i), i+1
end
# This assumes that r.step has already been split so that (0:len-1)*r.step.hi is exact
function unsafe_getindex(r::StepRangeLen{T,<:TwicePrecision,<:TwicePrecision}, i::Integer) where T
# Very similar to _getindex_hiprec, but optimized to avoid a 2nd call to add2
@_inline_meta
u = i - r.offset
shift_hi, shift_lo = u*r.step.hi, u*r.step.lo
x_hi, x_lo = add2(r.ref.hi, shift_hi)
T(x_hi + (x_lo + (shift_lo + r.ref.lo)))
end
function _getindex_hiprec(r::StepRangeLen{<:Any,<:TwicePrecision,<:TwicePrecision}, i::Integer)
u = i - r.offset
shift_hi, shift_lo = u*r.step.hi, u*r.step.lo
x_hi, x_lo = add2(r.ref.hi, shift_hi)
x_hi, x_lo = add2(x_hi, x_lo + (shift_lo + r.ref.lo))
TwicePrecision(x_hi, x_lo)
end
function getindex(r::StepRangeLen{T,<:TwicePrecision,<:TwicePrecision}, s::OrdinalRange{<:Integer}) where T
@_inline_meta
@boundscheck checkbounds(r, s)
soffset = 1 + round(Int, (r.offset - first(s))/step(s))
soffset = clamp(soffset, 1, length(s))
ioffset = first(s) + (soffset-1)*step(s)
if step(s) == 1 || length(s) < 2
newstep = r.step
else
newstep = twiceprecision(r.step*step(s), nbitslen(T, length(s), soffset))
end
if ioffset == r.offset
StepRangeLen(r.ref, newstep, length(s), max(1,soffset))
else
StepRangeLen(r.ref + (ioffset-r.offset)*r.step, newstep, length(s), max(1,soffset))
end
end
*(x::Real, r::StepRangeLen{<:Real,<:TwicePrecision}) =
StepRangeLen(x*r.ref, twiceprecision(x*r.step, nbitslen(r)), length(r), r.offset)
*(r::StepRangeLen{<:Real,<:TwicePrecision}, x::Real) = x*r
/(r::StepRangeLen{<:Real,<:TwicePrecision}, x::Real) =
StepRangeLen(r.ref/x, twiceprecision(r.step/x, nbitslen(r)), length(r), r.offset)
convert(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{T,R,S}) where {T<:AbstractFloat,R<:TwicePrecision,S<:TwicePrecision} = r
convert(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen) where {T<:AbstractFloat,R<:TwicePrecision,S<:TwicePrecision} =
_convertSRL(StepRangeLen{T,R,S}, r)
convert(::Type{StepRangeLen{T}}, r::StepRangeLen) where {T<:Union{Float16,Float32,Float64}} =
_convertSRL(StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}, r)
convert(::Type{StepRangeLen{T}}, r::Range) where {T<:Union{Float16,Float32,Float64}} =
_convertSRL(StepRangeLen{T,TwicePrecision{T},TwicePrecision{T}}, r)
function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{<:Integer}) where {T,R,S}
StepRangeLen{T,R,S}(R(r.ref), S(r.step), length(r), r.offset)
end
function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::Range{<:Integer}) where {T,R,S}
StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r))
end
function _convertSRL(::Type{StepRangeLen{T,R,S}}, r::Range{U}) where {T,R,S,U}
# if start and step have a rational approximation in the old type,
# then we transfer that rational approximation to the new type
f, s = first(r), step(r)
start_n, start_d = rat(f)
step_n, step_d = rat(s)
if start_d != 0 && step_d != 0 &&
U(start_n/start_d) == f && U(step_n/step_d) == s
den = lcm(start_d, step_d)
m = maxintfloat(T, Int)
if den != 0 && abs(f*den) <= m && abs(s*den) <= m &&
rem(den, start_d) == 0 && rem(den, step_d) == 0
start_n = round(Int, f*den)
step_n = round(Int, s*den)
return floatrange(T, start_n, step_n, length(r), den)
end
end
__convertSRL(StepRangeLen{T,R,S}, r)
end
function __convertSRL(::Type{StepRangeLen{T,R,S}}, r::StepRangeLen{U}) where {T,R,S,U}
StepRangeLen{T,R,S}(R(r.ref), S(r.step), length(r), r.offset)
end
function __convertSRL(::Type{StepRangeLen{T,R,S}}, r::Range{U}) where {T,R,S,U}
StepRangeLen{T,R,S}(R(first(r)), S(step(r)), length(r))
end
function sum(r::StepRangeLen)
l = length(r)
# Compute the contribution of step over all indexes.
# Indexes on opposite side of r.offset contribute with opposite sign,
# r.step * (sum(1:np) - sum(1:nn))
np, nn = l - r.offset, r.offset - 1 # positive, negative
# To prevent overflow in sum(1:n), multiply its factors by the step
sp, sn = sumpair(np), sumpair(nn)
tp = _prod(r.step, sp[1], sp[2])
tn = _prod(r.step, sn[1], sn[2])
s_hi, s_lo = add2(tp.hi, -tn.hi)
s_lo += tp.lo - tn.lo
# Add in contributions of ref
ref = r.ref * l
sm_hi, sm_lo = add2(s_hi, ref.hi)
add2(sm_hi, sm_lo + ref.lo)[1]
end
# sum(1:n) as a product of two integers
sumpair(n::Integer) = iseven(n) ? (n+1, n>>1) : (n, (n+1)>>1)
function +(r1::StepRangeLen{T,R}, r2::StepRangeLen{T,R}) where T where R<:TwicePrecision
len = length(r1)
(len == length(r2) ||
throw(DimensionMismatch("argument dimensions must match")))
if r1.offset == r2.offset
imid = r1.offset
ref = r1.ref + r2.ref
else
imid = round(Int, (r1.offset+r2.offset)/2)
ref1mid = _getindex_hiprec(r1, imid)
ref2mid = _getindex_hiprec(r2, imid)
ref = ref1mid + ref2mid
end
step = twiceprecision(r1.step + r2.step, nbitslen(T, len, imid))
StepRangeLen{T,typeof(ref),typeof(step)}(ref, step, len, imid)
end
## LinSpace
# For Float16, Float32, and Float64, linspace returns a StepRangeLen
function linspace(start::T, stop::T, len::Integer) where T<:Union{Float16,Float32,Float64}
len < 2 && return _linspace1(T, start, stop, len)
if start == stop
return StepRangeLen(TwicePrecision(start,zero(T)), TwicePrecision(zero(T),zero(T)), len)
end
# Attempt to find exact rational approximations
start_n, start_d = rat(start)
stop_n, stop_d = rat(stop)
if start_d != 0 && stop_d != 0
den = lcm(start_d, stop_d)
m = maxintfloat(T, Int)
if den != 0 && abs(den*start) <= m && abs(den*stop) <= m
start_n = round(Int, den*start)
stop_n = round(Int, den*stop)
if T(start_n/den) == start && T(stop_n/den) == stop
return linspace(T, start_n, stop_n, len, den)
end
end
end
_linspace(start, stop, len)
end
function _linspace(start::T, stop::T, len::Integer) where T<:Union{Float16,Float32,Float64}
(isfinite(start) && isfinite(stop)) || throw(ArgumentError("start and stop must be finite, got $start and $stop"))
# Find the index that returns the smallest-magnitude element
Δ, Δfac = stop-start, 1
if !isfinite(Δ) # handle overflow for large endpoints
Δ, Δfac = stop/len - start/len, Int(len)
end
tmin = -(start/Δ)/Δfac # interpolation t such that return value is 0
imin = round(Int, tmin*(len-1)+1)
if 1 < imin < len
# The smallest-magnitude element is in the interior
t = (imin-1)/(len-1)
ref = T((1-t)*start + t*stop)
step = imin-1 < len-imin ? (ref-start)/(imin-1) : (stop-ref)/(len-imin)
elseif imin <= 1
imin = 1
ref = start
step = (Δ/(len-1))*Δfac
else
imin = Int(len)
ref = stop
step = (Δ/(len-1))*Δfac
end
if len == 2 && !isfinite(step)
# For very large endpoints where step overflows, exploit the
# split-representation to handle the overflow
return StepRangeLen(TwicePrecision(start, zero(T)),
TwicePrecision(-start, stop), 2)
end
# 2x calculations to get high precision endpoint matching while also
# preventing overflow in ref_hi+(i-offset)*step_hi
m, k = prevfloat(realmax(T)), max(imin-1, len-imin)
step_hi_pre = clamp(step, max(-(m+ref)/k, (-m+ref)/k), min((m-ref)/k, (m+ref)/k))
nb = nbitslen(T, len, imin)
step_hi = truncbits(step_hi_pre, nb)
x1_hi, x1_lo = add2((1-imin)*step_hi, ref)
x2_hi, x2_lo = add2((len-imin)*step_hi, ref)
a, b = (start - x1_hi) - x1_lo, (stop - x2_hi) - x2_lo
step_lo = (b - a)/(len - 1)
ref_lo = a - (1 - imin)*step_lo
StepRangeLen(TwicePrecision(ref, ref_lo), TwicePrecision(step_hi, step_lo), Int(len), imin)
end
# linspace for rational numbers, start = start_n/den, stop = stop_n/den
# Note this returns a StepRangeLen
function linspace(::Type{T}, start_n::Integer, stop_n::Integer, len::Integer, den::Integer) where T
len < 2 && return _linspace1(T, start_n/den, stop_n/den, len)
start_n == stop_n && return StepRangeLen(TwicePrecision{T}((start_n, den)), zero(TwicePrecision{T}), len)
tmin = -start_n/(Float64(stop_n) - Float64(start_n))
imin = round(Int, tmin*(len-1)+1)
imin = clamp(imin, 1, Int(len))
# Compute (1-t)*a and t*b separately in 2x precision (itp = interpolant)...
dent = (den, len-1) # represent products as a tuple to eliminate risk of overflow
start_itp = proddiv(T, (len-imin, start_n), dent)
stop_itp = proddiv(T, (imin-1, stop_n), dent)
# ...and then combine them to make ref
ref = start_itp + stop_itp
# Compute step to 2x precision without risking overflow...
rend = proddiv(T, (stop_n,), dent)
rbeg = proddiv(T, (-start_n,), dent)
step = twiceprecision(rbeg + rend, nbitslen(T, len, imin)) # ...and truncate hi-bits as needed
StepRangeLen(ref, step, Int(len), imin)
end
# For len < 2
function _linspace1(::Type{T}, start, stop, len::Integer) where T
len >= 0 || throw(ArgumentError("linspace($start, $stop, $len): negative length"))
if len <= 1
len == 1 && (start == stop || throw(ArgumentError("linspace($start, $stop, $len): endpoints differ")))
# Ensure that first(r)==start and last(r)==stop even for len==0
return StepRangeLen(TwicePrecision(start, zero(T)), TwicePrecision(start, -stop), len, 1)
end
throw(ArgumentError("should only be called for len < 2, got $len"))
end
### Numeric utilities
# Approximate x with a rational representation. Guaranteed to return,
# but not guaranteed to return a precise answer.
# https://en.wikipedia.org/wiki/Continued_fraction#Best_rational_approximations
function rat(x)
y = x
a = d = 1
b = c = 0
m = maxintfloat(narrow(typeof(x)))
while abs(y) <= m
f = trunc(Int,y)
y -= f
a, c = f*a + c, a
b, d = f*b + d, b
max(abs(a), abs(b)) <= convert(Int,m) || return c, d
oftype(x,a)/oftype(x,b) == x && break
y = inv(y)
end
return a, b
end
narrow(::Type{Float64}) = Float32
narrow(::Type{Float32}) = Float16
narrow(::Type{Float16}) = Float16
function add2(u::T, v::T) where T<:Number
@_inline_meta
u, v = ifelse(abs(v) > abs(u), (v, u), (u, v))
w = u + v
w, (u-w) + v
end
add2(u, v) = _add2(promote(u, v)...)
_add2(u::T, v::T) where {T<:Number} = add2(u, v)
_add2(u, v) = error("$u::$(typeof(u)) and $v::$(typeof(v)) cannot be promoted to a common type")
function +(x::TwicePrecision, y::Number)
s_hi, s_lo = add2(x.hi, y)
TwicePrecision(s_hi, s_lo+x.lo)
end
+(x::Number, y::TwicePrecision) = y+x
function +(x::TwicePrecision{T}, y::TwicePrecision{T}) where T
r = x.hi + y.hi
s = abs(x.hi) > abs(y.hi) ? (((x.hi - r) + y.hi) + y.lo) + x.lo : (((y.hi - r) + x.hi) + x.lo) + y.lo
TwicePrecision(r, s)
end
+(x::TwicePrecision, y::TwicePrecision) = _add2(promote(x, y)...)
_add2(x::T, y::T) where {T<:TwicePrecision} = x + y
_add2(x::TwicePrecision, y::TwicePrecision) = TwicePrecision(x.hi+y.hi, x.lo+y.lo)
function *(x::TwicePrecision, v::Integer)
v == 0 && return TwicePrecision(x.hi*v, x.lo*v)
nb = ceil(Int, log2(abs(v)))
u = truncbits(x.hi, nb)
y_hi, y_lo = add2(u*v, ((x.hi-u) + x.lo)*v)
TwicePrecision(y_hi, y_lo)
end
function _mul2(x::TwicePrecision{T}, v::T) where T<:Union{Float16,Float32,Float64}
v == 0 && return TwicePrecision(T(0), T(0))
xhh, xhl = splitprec(x.hi)
vh, vl = splitprec(v)
y_hi, y_lo = add2(xhh*vh, xhh*vl + xhl*vh)
TwicePrecision(y_hi, y_lo + xhl*vl + x.lo*v)
end
_mul2(x::TwicePrecision, v::Number) = TwicePrecision(x.hi*v, x.lo*v)
function *(x::TwicePrecision{R}, v::S) where R where S<:Number
T = promote_type(R, S)
_mul2(convert(TwicePrecision{T}, x), convert(T, v))
end
*(v::Number, x::TwicePrecision) = x*v
function /(x::TwicePrecision, v::Number)
hi = x.hi/v
w = TwicePrecision(hi, zero(hi)) * v
lo = (((x.hi - w.hi) - w.lo) + x.lo)/v
y_hi, y_lo = add2(hi, lo)
TwicePrecision(y_hi, y_lo)
end
# hi-precision version of prod(num)/prod(den)
# num and den are tuples to avoid risk of overflow
function proddiv(T, num, den)
@_inline_meta
t = TwicePrecision(T(num[1]), zero(T))
t = _prod(t, tail(num)...)
_divt(t, den...)
end
function _prod(t::TwicePrecision, x, y...)
@_inline_meta
_prod(t * x, y...)
end
_prod(t::TwicePrecision) = t
function _divt(t::TwicePrecision, x, y...)
@_inline_meta
_divt(t / x, y...)
end
_divt(t::TwicePrecision) = t
isbetween(a, x, b) = a <= x <= b || b <= x <= a