-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
/
dict.jl
1031 lines (871 loc) · 27.8 KB
/
dict.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This file is a part of Julia. License is MIT: https://julialang.org/license
function show(io::IO, t::AbstractDict{K,V}) where V where K
recur_io = IOContext(io, :SHOWN_SET => t,
:typeinfo => eltype(t))
limit = get(io, :limit, false)::Bool
# show in a Julia-syntax-like form: Dict(k=>v, ...)
print(io, typeinfo_prefix(io, t)[1])
print(io, '(')
if !isempty(t) && !show_circular(io, t)
first = true
n = 0
for pair in t
first || print(io, ", ")
first = false
show(recur_io, pair)
n+=1
limit && n >= 10 && (print(io, "…"); break)
end
end
print(io, ')')
end
# Dict
# These can be changed, to trade off better performance for space
const global maxallowedprobe = 16
const global maxprobeshift = 6
"""
Dict([itr])
`Dict{K,V}()` constructs a hash table with keys of type `K` and values of type `V`.
Keys are compared with [`isequal`](@ref) and hashed with [`hash`](@ref).
Given a single iterable argument, constructs a [`Dict`](@ref) whose key-value pairs
are taken from 2-tuples `(key,value)` generated by the argument.
# Examples
```jldoctest
julia> Dict([("A", 1), ("B", 2)])
Dict{String, Int64} with 2 entries:
"B" => 2
"A" => 1
```
Alternatively, a sequence of pair arguments may be passed.
```jldoctest
julia> Dict("A"=>1, "B"=>2)
Dict{String, Int64} with 2 entries:
"B" => 2
"A" => 1
```
!!! warning
Keys are allowed to be mutable, but if you do mutate stored
keys, the hash table may become internally inconsistent, in which case
the `Dict` will not work properly. [`IdDict`](@ref) can be an
alternative if you need to mutate keys.
"""
mutable struct Dict{K,V} <: AbstractDict{K,V}
# Metadata: empty => 0x00, removed => 0x7f, full => 0b1[7 most significant hash bits]
slots::Memory{UInt8}
keys::Memory{K}
vals::Memory{V}
ndel::Int
count::Int
age::UInt
idxfloor::Int # an index <= the indices of all used slots
maxprobe::Int
function Dict{K,V}() where V where K
n = 0
slots = Memory{UInt8}(undef,n)
fill!(slots, 0x0)
new(slots, Memory{K}(undef, n), Memory{V}(undef, n), 0, 0, 0, max(1, n), 0)
end
function Dict{K,V}(d::Dict{K,V}) where V where K
new(copy(d.slots), copy(d.keys), copy(d.vals), d.ndel, d.count, d.age,
d.idxfloor, d.maxprobe)
end
function Dict{K, V}(slots::Memory{UInt8}, keys::Memory{K}, vals::Memory{V}, ndel::Int, count::Int, age::UInt, idxfloor::Int, maxprobe::Int) where {K, V}
new(slots, keys, vals, ndel, count, age, idxfloor, maxprobe)
end
end
function Dict{K,V}(kv) where V where K
h = Dict{K,V}()
haslength(kv) && sizehint!(h, Int(length(kv))::Int)
for (k,v) in kv
h[k] = v
end
return h
end
Dict{K,V}(p::Pair) where {K,V} = setindex!(Dict{K,V}(), p.second, p.first)
function Dict{K,V}(ps::Pair...) where V where K
h = Dict{K,V}()
sizehint!(h, length(ps))
for p in ps
h[p.first] = p.second
end
return h
end
# Note the constructors of WeakKeyDict mirror these here, keep in sync.
Dict() = Dict{Any,Any}()
Dict(kv::Tuple{}) = Dict()
copy(d::Dict) = Dict(d)
const AnyDict = Dict{Any,Any}
Dict(ps::Pair{K,V}...) where {K,V} = Dict{K,V}(ps)
Dict(ps::Pair...) = Dict(ps)
Dict(kv) = dict_with_eltype((K, V) -> Dict{K, V}, kv, eltype(kv))
empty(a::AbstractDict, ::Type{K}, ::Type{V}) where {K, V} = Dict{K, V}()
# Gets 7 most significant bits from the hash (hsh), first bit is 1
_shorthash7(hsh::UInt) = (hsh >> (8sizeof(UInt)-7))%UInt8 | 0x80
# hashindex (key, sz) - computes optimal position and shorthash7
# idx - optimal position in the hash table
# sh::UInt8 - short hash (7 highest hash bits)
function hashindex(key, sz)
hsh = hash(key)::UInt
idx = (((hsh % Int) & (sz-1)) + 1)::Int
return idx, _shorthash7(hsh)
end
@propagate_inbounds isslotempty(h::Dict, i::Int) = h.slots[i] == 0x00
@propagate_inbounds isslotfilled(h::Dict, i::Int) = (h.slots[i] & 0x80) != 0
@propagate_inbounds isslotmissing(h::Dict, i::Int) = h.slots[i] == 0x7f
@constprop :none function rehash!(h::Dict{K,V}, newsz = length(h.keys)) where V where K
olds = h.slots
oldk = h.keys
oldv = h.vals
sz = length(olds)
newsz = _tablesz(newsz)
h.age += 1
h.idxfloor = 1
if h.count == 0
# TODO: tryresize
h.slots = Memory{UInt8}(undef, newsz)
fill!(h.slots, 0x0)
h.keys = Memory{K}(undef, newsz)
h.vals = Memory{V}(undef, newsz)
h.ndel = 0
h.maxprobe = 0
return h
end
slots = Memory{UInt8}(undef, newsz)
fill!(slots, 0x0)
keys = Memory{K}(undef, newsz)
vals = Memory{V}(undef, newsz)
age0 = h.age
count = 0
maxprobe = 0
for i = 1:sz
@inbounds if (olds[i] & 0x80) != 0
k = oldk[i]
v = oldv[i]
index, sh = hashindex(k, newsz)
index0 = index
while slots[index] != 0
index = (index & (newsz-1)) + 1
end
probe = (index - index0) & (newsz-1)
probe > maxprobe && (maxprobe = probe)
slots[index] = olds[i]
keys[index] = k
vals[index] = v
count += 1
end
end
@assert h.age == age0 "Multiple concurrent writes to Dict detected!"
h.age += 1
h.slots = slots
h.keys = keys
h.vals = vals
h.count = count
h.ndel = 0
h.maxprobe = maxprobe
return h
end
function sizehint!(d::Dict{T}, newsz; shrink::Bool=true) where T
oldsz = length(d.slots)
# limit new element count to max_values of the key type
newsz = min(max(newsz, length(d)), max_values(T)::Int)
# need at least 1.5n space to hold n elements
newsz = _tablesz(cld(3 * newsz, 2))
return (shrink ? newsz == oldsz : newsz <= oldsz) ? d : rehash!(d, newsz)
end
"""
empty!(collection) -> collection
Remove all elements from a `collection`.
# Examples
```jldoctest
julia> A = Dict("a" => 1, "b" => 2)
Dict{String, Int64} with 2 entries:
"b" => 2
"a" => 1
julia> empty!(A);
julia> A
Dict{String, Int64}()
```
"""
function empty!(h::Dict{K,V}) where V where K
fill!(h.slots, 0x0)
sz = length(h.slots)
for i in 1:sz
_unsetindex!(h.keys, i)
_unsetindex!(h.vals, i)
end
h.ndel = 0
h.count = 0
h.maxprobe = 0
h.age += 1
h.idxfloor = max(1, sz)
return h
end
# get the index where a key is stored, or -1 if not present
function ht_keyindex(h::Dict{K,V}, key) where V where K
isempty(h) && return -1
sz = length(h.keys)
iter = 0
maxprobe = h.maxprobe
maxprobe < sz || throw(AssertionError()) # This error will never trigger, but is needed for terminates_locally to be valid
index, sh = hashindex(key, sz)
keys = h.keys
@assume_effects :terminates_locally :noub @inbounds while true
isslotempty(h,index) && return -1
if sh == h.slots[index]
k = keys[index]
if (key === k || isequal(key, k))
return index
end
end
index = (index & (sz-1)) + 1
(iter += 1) > maxprobe && return -1
end
# This line is unreachable
end
# get (index, sh) for the key
# index - where a key is stored, or -pos if not present
# and the key would be inserted at pos
# sh::UInt8 - short hash (7 highest hash bits)
# This version is for use by setindex! and get!
function ht_keyindex2_shorthash!(h::Dict{K,V}, key) where V where K
sz = length(h.keys)
if sz == 0 # if Dict was empty resize and then return location to insert
rehash!(h, 4)
index, sh = hashindex(key, length(h.keys))
return -index, sh
end
iter = 0
maxprobe = h.maxprobe
index, sh = hashindex(key, sz)
avail = 0
keys = h.keys
@inbounds while true
if isslotempty(h,index)
return (avail < 0 ? avail : -index), sh
end
if isslotmissing(h,index)
if avail == 0
# found an available slot, but need to keep scanning
# in case "key" already exists in a later collided slot.
avail = -index
end
elseif h.slots[index] == sh
k = keys[index]
if key === k || isequal(key, k)
return index, sh
end
end
index = (index & (sz-1)) + 1
iter += 1
iter > maxprobe && break
end
avail < 0 && return avail, sh
maxallowed = max(maxallowedprobe, sz>>maxprobeshift)
# Check if key is not present, may need to keep searching to find slot
@inbounds while iter < maxallowed
if !isslotfilled(h,index)
h.maxprobe = iter
return -index, sh
end
index = (index & (sz-1)) + 1
iter += 1
end
rehash!(h, h.count > 64000 ? sz*2 : sz*4)
return ht_keyindex2_shorthash!(h, key)
end
# Only for better backward compatibility. It can be removed in the future.
ht_keyindex2!(h::Dict, key) = ht_keyindex2_shorthash!(h, key)[1]
@propagate_inbounds function _setindex!(h::Dict, v, key, index, sh = _shorthash7(hash(key)))
h.ndel -= isslotmissing(h, index)
h.slots[index] = sh
h.keys[index] = key
h.vals[index] = v
h.count += 1
h.age += 1
if index < h.idxfloor
h.idxfloor = index
end
sz = length(h.keys)
# Rehash now if necessary
if (h.count + h.ndel)*3 > sz*2
# > 2/3 full (including tombstones)
rehash!(h, h.count > 64000 ? h.count*2 : max(h.count*4, 4))
end
nothing
end
function setindex!(h::Dict{K,V}, v0, key0) where V where K
if key0 isa K
key = key0
else
key = convert(K, key0)::K
if !(isequal(key, key0)::Bool)
throw(KeyTypeError(K, key0))
end
end
setindex!(h, v0, key)
end
function setindex!(h::Dict{K,V}, v0, key::K) where V where K
v = v0 isa V ? v0 : convert(V, v0)::V
index, sh = ht_keyindex2_shorthash!(h, key)
if index > 0
h.age += 1
@inbounds h.keys[index] = key
@inbounds h.vals[index] = v
else
@inbounds _setindex!(h, v, key, -index, sh)
end
return h
end
function setindex!(h::Dict{K,Any}, v, key::K) where K
@nospecialize v
index, sh = ht_keyindex2_shorthash!(h, key)
if index > 0
h.age += 1
@inbounds h.keys[index] = key
@inbounds h.vals[index] = v
else
@inbounds _setindex!(h, v, key, -index, sh)
end
return h
end
"""
get!(collection, key, default)
Return the value stored for the given key, or if no mapping for the key is present, store
`key => default`, and return `default`.
# Examples
```jldoctest
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> get!(d, "a", 5)
1
julia> get!(d, "d", 4)
4
julia> d
Dict{String, Int64} with 4 entries:
"c" => 3
"b" => 2
"a" => 1
"d" => 4
```
"""
get!(collection, key, default)
"""
get!(f::Union{Function, Type}, collection, key)
Return the value stored for the given key, or if no mapping for the key is present, store
`key => f()`, and return `f()`.
This is intended to be called using `do` block syntax.
# Examples
```jldoctest
julia> squares = Dict{Int, Int}();
julia> function get_square!(d, i)
get!(d, i) do
i^2
end
end
get_square! (generic function with 1 method)
julia> get_square!(squares, 2)
4
julia> squares
Dict{Int64, Int64} with 1 entry:
2 => 4
```
"""
get!(f::Callable, collection, key)
function get!(default::Callable, h::Dict{K,V}, key0) where V where K
if key0 isa K
key = key0
else
key = convert(K, key0)::K
if !isequal(key, key0)
throw(KeyTypeError(K, key0))
end
end
return get!(default, h, key)
end
function get!(default::Callable, h::Dict{K,V}, key::K) where V where K
index, sh = ht_keyindex2_shorthash!(h, key)
index > 0 && return h.vals[index]
age0 = h.age
v = default()
if !isa(v, V)
v = convert(V, v)::V
end
if h.age != age0
index, sh = ht_keyindex2_shorthash!(h, key)
end
if index > 0
h.age += 1
@inbounds h.keys[index] = key
@inbounds h.vals[index] = v
else
@inbounds _setindex!(h, v, key, -index, sh)
end
return v
end
function getindex(h::Dict{K,V}, key) where V where K
index = ht_keyindex(h, key)
return index < 0 ? throw(KeyError(key)) : @assume_effects :noub @inbounds h.vals[index]::V
end
"""
get(collection, key, default)
Return the value stored for the given key, or the given default value if no mapping for the
key is present.
!!! compat "Julia 1.7"
For tuples and numbers, this function requires at least Julia 1.7.
# Examples
```jldoctest
julia> d = Dict("a"=>1, "b"=>2);
julia> get(d, "a", 3)
1
julia> get(d, "c", 3)
3
```
"""
get(collection, key, default)
function get(h::Dict{K,V}, key, default) where V where K
index = ht_keyindex(h, key)
@inbounds return (index < 0) ? default : h.vals[index]::V
end
"""
get(f::Union{Function, Type}, collection, key)
Return the value stored for the given key, or if no mapping for the key is present, return
`f()`. Use [`get!`](@ref) to also store the default value in the dictionary.
This is intended to be called using `do` block syntax
```julia
get(dict, key) do
# default value calculated here
time()
end
```
"""
get(::Callable, collection, key)
function get(default::Callable, h::Dict{K,V}, key) where V where K
index = ht_keyindex(h, key)
@inbounds return (index < 0) ? default() : h.vals[index]::V
end
"""
haskey(collection, key) -> Bool
Determine whether a collection has a mapping for a given `key`.
# Examples
```jldoctest
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char, Int64} with 2 entries:
'a' => 2
'b' => 3
julia> haskey(D, 'a')
true
julia> haskey(D, 'c')
false
```
"""
haskey(h::Dict, key) = (ht_keyindex(h, key) >= 0)
in(key, v::KeySet{<:Any, <:Dict}) = (ht_keyindex(v.dict, key) >= 0)
"""
getkey(collection, key, default)
Return the key matching argument `key` if one exists in `collection`, otherwise return `default`.
# Examples
```jldoctest
julia> D = Dict('a'=>2, 'b'=>3)
Dict{Char, Int64} with 2 entries:
'a' => 2
'b' => 3
julia> getkey(D, 'a', 1)
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
julia> getkey(D, 'd', 'a')
'a': ASCII/Unicode U+0061 (category Ll: Letter, lowercase)
```
"""
function getkey(h::Dict{K,V}, key, default) where V where K
index = ht_keyindex(h, key)
@inbounds return (index<0) ? default : h.keys[index]::K
end
function _pop!(h::Dict, index)
@inbounds val = h.vals[index]
_delete!(h, index)
return val
end
function pop!(h::Dict, key)
index = ht_keyindex(h, key)
return index > 0 ? _pop!(h, index) : throw(KeyError(key))
end
"""
pop!(collection, key[, default])
Delete and return the mapping for `key` if it exists in `collection`, otherwise return
`default`, or throw an error if `default` is not specified.
# Examples
```jldoctest
julia> d = Dict("a"=>1, "b"=>2, "c"=>3);
julia> pop!(d, "a")
1
julia> pop!(d, "d")
ERROR: KeyError: key "d" not found
Stacktrace:
[...]
julia> pop!(d, "e", 4)
4
```
"""
pop!(collection, key, default)
function pop!(h::Dict, key, default)
index = ht_keyindex(h, key)
return index > 0 ? _pop!(h, index) : default
end
function pop!(h::Dict)
isempty(h) && throw(ArgumentError("dict must be non-empty"))
idx = skip_deleted_floor!(h)
@inbounds key = h.keys[idx]
@inbounds val = h.vals[idx]
_delete!(h, idx)
key => val
end
function _delete!(h::Dict{K,V}, index) where {K,V}
@inbounds begin
slots = h.slots
sz = length(slots)
_unsetindex!(h.keys, index)
_unsetindex!(h.vals, index)
# if the next slot is empty we don't need a tombstone
# and can remove all tombstones that were required by the element we just deleted
ndel = 1
nextind = (index & (sz-1)) + 1
if isslotempty(h, nextind)
while true
ndel -= 1
slots[index] = 0x00
index = ((index - 2) & (sz-1)) + 1
isslotmissing(h, index) || break
end
else
slots[index] = 0x7f
end
h.ndel += ndel
h.count -= 1
h.age += 1
return h
end
end
"""
delete!(collection, key)
Delete the mapping for the given key in a collection, if any, and return the collection.
# Examples
```jldoctest
julia> d = Dict("a"=>1, "b"=>2)
Dict{String, Int64} with 2 entries:
"b" => 2
"a" => 1
julia> delete!(d, "b")
Dict{String, Int64} with 1 entry:
"a" => 1
julia> delete!(d, "b") # d is left unchanged
Dict{String, Int64} with 1 entry:
"a" => 1
```
"""
delete!(collection, key)
function delete!(h::Dict, key)
index = ht_keyindex(h, key)
if index > 0
_delete!(h, index)
end
return h
end
function skip_deleted(h::Dict, i)
L = length(h.slots)
for i = i:L
@inbounds if isslotfilled(h,i)
return i
end
end
return 0
end
function skip_deleted_floor!(h::Dict)
idx = skip_deleted(h, h.idxfloor)
if idx != 0
h.idxfloor = idx
end
idx
end
@propagate_inbounds _iterate(t::Dict{K,V}, i) where {K,V} = i == 0 ? nothing : (Pair{K,V}(t.keys[i],t.vals[i]), i == typemax(Int) ? 0 : i+1)
@propagate_inbounds function iterate(t::Dict)
_iterate(t, skip_deleted(t, t.idxfloor))
end
@propagate_inbounds iterate(t::Dict, i) = _iterate(t, skip_deleted(t, i))
isempty(t::Dict) = (t.count == 0)
length(t::Dict) = t.count
@propagate_inbounds Iterators.only(t::Dict) = Iterators._only(t, first)
@propagate_inbounds function Base.iterate(v::T, i::Int = v.dict.idxfloor) where T <: Union{KeySet{<:Any, <:Dict}, ValueIterator{<:Dict}}
i == 0 && return nothing
i = skip_deleted(v.dict, i)
i == 0 && return nothing
vals = T <: KeySet ? v.dict.keys : v.dict.vals
(@inbounds vals[i], i == typemax(Int) ? 0 : i+1)
end
function filter!(pred, h::Dict{K,V}) where {K,V}
h.count == 0 && return h
@inbounds for i=1:length(h.slots)
if ((h.slots[i] & 0x80) != 0) && !pred(Pair{K,V}(h.keys[i], h.vals[i]))
_delete!(h, i)
end
end
return h
end
function reduce(::typeof(merge), items::Vector{<:Dict})
K = mapreduce(keytype, promote_type, items)
V = mapreduce(valtype, promote_type, items)
return reduce(merge!, items; init=Dict{K,V}())
end
function map!(f, iter::ValueIterator{<:Dict})
dict = iter.dict
vals = dict.vals
# @inbounds is here so that it gets propagated to isslotfilled
@inbounds for i = dict.idxfloor:lastindex(vals)
if isslotfilled(dict, i)
vals[i] = f(vals[i])
end
end
return iter
end
function mergewith!(combine, d1::Dict{K, V}, d2::AbstractDict) where {K, V}
haslength(d2) && sizehint!(d1, length(d1) + length(d2), shrink=false)
for (k, v) in d2
i, sh = ht_keyindex2_shorthash!(d1, k)
if i > 0
d1.vals[i] = combine(d1.vals[i], v)
else
if !(k isa K)
k1 = convert(K, k)::K
if !isequal(k, k1)
throw(KeyTypeError(K, k))
end
k = k1
end
if !isa(v, V)
v = convert(V, v)::V
end
@inbounds _setindex!(d1, v, k, -i, sh)
end
end
return d1
end
struct ImmutableDict{K,V} <: AbstractDict{K,V}
parent::ImmutableDict{K,V}
key::K
value::V
ImmutableDict{K,V}() where {K,V} = new() # represents an empty dictionary
ImmutableDict{K,V}(key, value) where {K,V} = (empty = new(); new(empty, key, value))
ImmutableDict{K,V}(parent::ImmutableDict, key, value) where {K,V} = new(parent, key, value)
end
"""
ImmutableDict
`ImmutableDict` is a dictionary implemented as an immutable linked list,
which is optimal for small dictionaries that are constructed over many individual insertions.
Note that it is not possible to remove a value, although it can be partially overridden and hidden
by inserting a new value with the same key.
ImmutableDict(KV::Pair)
Create a new entry in the `ImmutableDict` for a `key => value` pair
- use `(key => value) in dict` to see if this particular combination is in the properties set
- use `get(dict, key, default)` to retrieve the most recent value for a particular key
"""
ImmutableDict
ImmutableDict(KV::Pair{K,V}) where {K,V} = ImmutableDict{K,V}(KV[1], KV[2])
ImmutableDict(t::ImmutableDict{K,V}, KV::Pair) where {K,V} = ImmutableDict{K,V}(t, KV[1], KV[2])
ImmutableDict(t::ImmutableDict{K,V}, KV::Pair, rest::Pair...) where {K,V} =
ImmutableDict(ImmutableDict(t, KV), rest...)
ImmutableDict(KV::Pair, rest::Pair...) = ImmutableDict(ImmutableDict(KV), rest...)
function in(key_value::Pair, dict::ImmutableDict, valcmp=(==))
key, value = key_value
while isdefined(dict, :parent)
if isequal(dict.key, key)
valcmp(value, dict.value) && return true
end
dict = dict.parent
end
return false
end
function haskey(dict::ImmutableDict, key)
while isdefined(dict, :parent)
isequal(dict.key, key) && return true
dict = dict.parent
end
return false
end
function getindex(dict::ImmutableDict, key)
while isdefined(dict, :parent)
isequal(dict.key, key) && return dict.value
dict = dict.parent
end
throw(KeyError(key))
end
function get(dict::ImmutableDict, key, default)
while isdefined(dict, :parent)
isequal(dict.key, key) && return dict.value
dict = dict.parent
end
return default
end
function get(default::Callable, dict::ImmutableDict, key)
while isdefined(dict, :parent)
isequal(dict.key, key) && return dict.value
dict = dict.parent
end
return default()
end
# this actually defines reverse iteration (e.g. it should not be used for merge/copy/filter type operations)
function iterate(d::ImmutableDict{K,V}, t=d) where {K, V}
!isdefined(t, :parent) && return nothing
(Pair{K,V}(t.key, t.value), t.parent)
end
length(t::ImmutableDict) = count(Returns(true), t)
isempty(t::ImmutableDict) = !isdefined(t, :parent)
empty(::ImmutableDict, ::Type{K}, ::Type{V}) where {K, V} = ImmutableDict{K,V}()
_similar_for(c::AbstractDict, ::Type{Pair{K,V}}, itr, isz, len) where {K, V} = empty(c, K, V)
_similar_for(c::AbstractDict, ::Type{T}, itr, isz, len) where {T} =
throw(ArgumentError("for AbstractDicts, similar requires an element type of Pair;\n if calling map, consider a comprehension instead"))
include("hamt.jl")
using .HashArrayMappedTries
using Core.OptimizedGenerics: KeyValue
const HAMT = HashArrayMappedTries
struct PersistentDict{K,V} <: AbstractDict{K,V}
trie::HAMT.HAMT{K,V}
# Serves as a marker for an empty initialization
@noinline function KeyValue.set(::Type{PersistentDict{K, V}}) where {K, V}
new{K, V}(HAMT.HAMT{K,V}())
end
@noinline function KeyValue.set(::Type{PersistentDict{K, V}}, ::Nothing, key, val) where {K, V}
new{K, V}(HAMT.HAMT{K, V}(key => val))
end
@noinline Base.@assume_effects :effect_free :terminates_globally KeyValue.set(
dict::PersistentDict{K, V}, key, val) where {K, V} = @inline _keyvalueset(dict, key, val)
@noinline Base.@assume_effects :nothrow :effect_free :terminates_globally KeyValue.set(
dict::PersistentDict{K, V}, key::K, val::V) where {K, V} = @inline _keyvalueset(dict, key, val)
global function _keyvalueset(dict::PersistentDict{K, V}, key, val) where {K, V}
trie = dict.trie
h = HAMT.HashState(key)
found, present, trie, i, bi, top, hs = HAMT.path(trie, key, h, #=persistent=#true)
HAMT.insert!(found, present, trie, i, bi, hs, val)
return new{K, V}(top)
end
@noinline Base.@assume_effects :effect_free :terminates_globally KeyValue.set(
dict::PersistentDict{K, V}, key) where {K, V} = @inline _keyvalueset(dict, key)
@noinline Base.@assume_effects :nothrow :effect_free :terminates_globally KeyValue.set(
dict::PersistentDict{K, V}, key::K) where {K, V} = @inline _keyvalueset(dict, key)
global function _keyvalueset(dict::PersistentDict{K, V}, key) where {K, V}
trie = dict.trie
h = HAMT.HashState(key)
found, present, trie, i, bi, top, _ = HAMT.path(trie, key, h, #=persistent=#true)
if found && present
deleteat!(trie.data, i)
HAMT.unset!(trie, bi)
end
return new{K, V}(top)
end
end
"""
PersistentDict
`PersistentDict` is a dictionary implemented as an hash array mapped trie,
which is optimal for situations where you need persistence, each operation
returns a new dictionary separate from the previous one, but the underlying
implementation is space-efficient and may share storage across multiple
separate dictionaries.
!!! note
It behaves like an IdDict.
```julia
PersistentDict(KV::Pair)
```
# Examples
```jldoctest
julia> dict = Base.PersistentDict(:a=>1)
Base.PersistentDict{Symbol, Int64} with 1 entry:
:a => 1
julia> dict2 = Base.delete(dict, :a)
Base.PersistentDict{Symbol, Int64}()
julia> dict3 = Base.PersistentDict(dict, :a=>2)
Base.PersistentDict{Symbol, Int64} with 1 entry:
:a => 2
```
"""
PersistentDict
PersistentDict{K,V}() where {K, V} = KeyValue.set(PersistentDict{K,V})
function PersistentDict{K,V}(KV::Pair) where {K,V}
KeyValue.set(
PersistentDict{K, V},
nothing,
KV...)
end
function PersistentDict(KV::Pair{K,V}) where {K,V}
KeyValue.set(
PersistentDict{K, V},
nothing,
KV...)
end
PersistentDict(dict::PersistentDict, pair::Pair) = PersistentDict(dict, pair...)
PersistentDict{K,V}(dict::PersistentDict{K,V}, pair::Pair) where {K,V} = PersistentDict(dict, pair...)
function PersistentDict(dict::PersistentDict{K,V}, key, val) where {K,V}
key = convert(K, key)
val = convert(V, val)
return KeyValue.set(dict, key, val)
end
function PersistentDict{K,V}(KV::Pair, rest::Pair...) where {K,V}
dict = PersistentDict{K,V}(KV)
for (key, value) in rest
dict = PersistentDict(dict, key, value)
end
return dict
end
function PersistentDict(kv::Pair, rest::Pair...)
dict = PersistentDict(kv)
for (key, value) in rest
dict = PersistentDict(dict, key, value)
end
return dict
end
eltype(::PersistentDict{K,V}) where {K,V} = Pair{K,V}
function in(key_val::Pair{K,V}, dict::PersistentDict{K,V}, valcmp=(==)) where {K,V}
key, val = key_val
found = KeyValue.get(dict, key)
found === nothing && return false
return valcmp(val, only(found))
end
function haskey(dict::PersistentDict{K}, key::K) where K
return KeyValue.get(dict, key) !== nothing
end
function getindex(dict::PersistentDict{K,V}, key::K) where {K,V}
found = KeyValue.get(dict, key)
found === nothing && throw(KeyError(key))
return only(found)
end
function get(dict::PersistentDict{K,V}, key::K, default) where {K,V}
found = KeyValue.get(dict, key)
found === nothing && return default
return only(found)
end
@noinline function KeyValue.get(dict::PersistentDict{K, V}, key) where {K, V}
trie = dict.trie
if HAMT.islevel_empty(trie)
return nothing
end
h = HAMT.HashState(key)