diff --git a/base/reinterpretarray.jl b/base/reinterpretarray.jl index 8b4025e6903cd..d74a043293a3a 100644 --- a/base/reinterpretarray.jl +++ b/base/reinterpretarray.jl @@ -13,15 +13,16 @@ struct ReinterpretArray{T,N,S,A<:AbstractArray{S},IsReshaped} <: AbstractArray{T function throwbits(S::Type, T::Type, U::Type) @noinline - throw(ArgumentError("cannot reinterpret `$(S)` as `$(T)`, type `$(U)` is not a bits type")) + throw(ArgumentError(LazyString("cannot reinterpret `", S, "` as `", T, "`, type `", U, "` is not a bits type"))) end function throwsize0(S::Type, T::Type, msg) @noinline - throw(ArgumentError("cannot reinterpret a zero-dimensional `$(S)` array to `$(T)` which is of a $msg size")) + throw(ArgumentError(LazyString("cannot reinterpret a zero-dimensional `", S, "` array to `", T, + "` which is of a ", msg, " size"))) end function throwsingleton(S::Type, T::Type) @noinline - throw(ArgumentError("cannot reinterpret a `$(S)` array to `$(T)` which is a singleton type")) + throw(ArgumentError(LazyString("cannot reinterpret a `", S, "` array to `", T, "` which is a singleton type"))) end global reinterpret @@ -67,14 +68,14 @@ struct ReinterpretArray{T,N,S,A<:AbstractArray{S},IsReshaped} <: AbstractArray{T function reinterpret(::Type{T}, a::A) where {T,N,S,A<:AbstractArray{S, N}} function thrownonint(S::Type, T::Type, dim) @noinline - throw(ArgumentError(""" - cannot reinterpret an `$(S)` array to `$(T)` whose first dimension has size `$(dim)`. - The resulting array would have non-integral first dimension. - """)) + throw(ArgumentError(LazyString( + "cannot reinterpret an `", S, "` array to `", T, "` whose first dimension has size `", dim, + "`. The resulting array would have a non-integral first dimension."))) end function throwaxes1(S::Type, T::Type, ax1) @noinline - throw(ArgumentError("cannot reinterpret a `$(S)` array to `$(T)` when the first axis is $ax1. Try reshaping first.")) + throw(ArgumentError(LazyString("cannot reinterpret a `", S, "` array to `", T, + "` when the first axis is ", ax1, ". Try reshaping first."))) end isbitstype(T) || throwbits(S, T, T) isbitstype(S) || throwbits(S, T, S) @@ -99,15 +100,19 @@ struct ReinterpretArray{T,N,S,A<:AbstractArray{S},IsReshaped} <: AbstractArray{T function reinterpret(::typeof(reshape), ::Type{T}, a::A) where {T,S,A<:AbstractArray{S}} function throwintmult(S::Type, T::Type) @noinline - throw(ArgumentError("`reinterpret(reshape, T, a)` requires that one of `sizeof(T)` (got $(sizeof(T))) and `sizeof(eltype(a))` (got $(sizeof(S))) be an integer multiple of the other")) + throw(ArgumentError(LazyString("`reinterpret(reshape, T, a)` requires that one of `sizeof(T)` (got ", + sizeof(T), ") and `sizeof(eltype(a))` (got ", sizeof(S), ") be an integer multiple of the other"))) end function throwsize1(a::AbstractArray, T::Type) @noinline - throw(ArgumentError("`reinterpret(reshape, $T, a)` where `eltype(a)` is $(eltype(a)) requires that `axes(a, 1)` (got $(axes(a, 1))) be equal to 1:$(sizeof(T) ÷ sizeof(eltype(a))) (from the ratio of element sizes)")) + throw(ArgumentError(LazyString("`reinterpret(reshape, ", T, ", a)` where `eltype(a)` is ", eltype(a), + " requires that `axes(a, 1)` (got ", axes(a, 1), ") be equal to 1:", + sizeof(T) ÷ sizeof(eltype(a)), " (from the ratio of element sizes)"))) end function throwfromsingleton(S, T) @noinline - throw(ArgumentError("`reinterpret(reshape, $T, a)` where `eltype(a)` is $S requires that $T be a singleton type, since $S is one")) + throw(ArgumentError(LazyString("`reinterpret(reshape, ", T, ", a)` where `eltype(a)` is ", S, + " requires that ", T, " be a singleton type, since ", S, " is one"))) end isbitstype(T) || throwbits(S, T, T) isbitstype(S) || throwbits(S, T, S) @@ -851,8 +856,8 @@ end inpackedsize = packedsize(In) outpackedsize = packedsize(Out) inpackedsize == outpackedsize || - throw(ArgumentError("Packed sizes of types $Out and $In do not match; got $outpackedsize \ - and $inpackedsize, respectively.")) + throw(ArgumentError(LazyString("Packed sizes of types ", Out, " and ", In, + " do not match; got ", outpackedsize, " and ", inpackedsize, ", respectively."))) in = Ref{In}(x) out = Ref{Out}() if struct_subpadding(Out, In) diff --git a/test/reinterpretarray.jl b/test/reinterpretarray.jl index 46ecbf6d06723..e6381329e4ec6 100644 --- a/test/reinterpretarray.jl +++ b/test/reinterpretarray.jl @@ -40,9 +40,8 @@ end @test_throws ArgumentError("cannot reinterpret `Vector{Int32}` as `Int32`, type `Vector{Int32}` is not a bits type") reinterpret(Int32, Av) @test_throws ArgumentError("cannot reinterpret a zero-dimensional `Int64` array to `Int32` which is of a different size") reinterpret(Int32, reshape([Int64(0)])) @test_throws ArgumentError("cannot reinterpret a zero-dimensional `Int32` array to `Int64` which is of a different size") reinterpret(Int64, reshape([Int32(0)])) -@test_throws ArgumentError("""cannot reinterpret an `$Int` array to `Tuple{$Int, $Int}` whose first dimension has size `5`. - The resulting array would have non-integral first dimension. - """) reinterpret(Tuple{Int,Int}, [1,2,3,4,5]) +@test_throws ArgumentError("cannot reinterpret an `$Int` array to `Tuple{$Int, $Int}` whose first dimension has size `5`."* + " The resulting array would have a non-integral first dimension.") reinterpret(Tuple{Int,Int}, [1,2,3,4,5]) @test_throws ArgumentError("`reinterpret(reshape, Complex{Int64}, a)` where `eltype(a)` is Int64 requires that `axes(a, 1)` (got Base.OneTo(4)) be equal to 1:2 (from the ratio of element sizes)") reinterpret(reshape, Complex{Int64}, A) @test_throws ArgumentError("`reinterpret(reshape, T, a)` requires that one of `sizeof(T)` (got 24) and `sizeof(eltype(a))` (got 16) be an integer multiple of the other") reinterpret(reshape, NTuple{3, Int64}, B)