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These bounds are computed for Float64 only. Let’s compute generic bounds.

For o, compute relative error between log(1+ e®) and e”:
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for x < 0. Therefore Ay < e whenever z <log(e) = xo.

For 1, compute relative error between log(1l+¢”*) and z +e~*:
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provided log(1+e%) > 1, that is  >In(e — 1), and where we used the alternating series log(14+e~%) >

2x
—2_ % ___ Therefore A <& whenever x> —%ln(Zs) =1;.

€ 2

For x2, compute relative error between log(1+ e*) and x:
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provided = >1In(e —1). Then Ay <e whenever z > —In(e® —1).
A tighter z2 can be found by:
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Solving %: e gives o=W(1/¢), where W(+) is Lambert’s function. For large argument Lambert’s
function has the asymptotic form:
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An even tighter z2 can be found by solving numerically log(1 +e %)

log(1 + e®) =&



