diff --git a/src/cov.jl b/src/cov.jl index 773e1bcf2..d9f4b815a 100644 --- a/src/cov.jl +++ b/src/cov.jl @@ -31,7 +31,7 @@ scattermat_zm(x::DenseMatrix, wv::AbstractWeights, vardim::Int) = _symmetrize!(unscaled_covzm(x, _scalevars(x, values(wv), vardim), vardim)) """ - scattermat(X, [wv::AbstractWeights]; mean=nothing, vardim=1) + scattermat(X, [wv::AbstractWeights,] vardim=1; mean=nothing) Compute the scatter matrix, which is an unnormalized covariance matrix. A weighting vector `wv` can be specified to weight @@ -49,7 +49,7 @@ function scattermat end """ - cov(X, w::AbstractWeights; mean=nothing, vardim=1, corrected=false) + cov(X, w::AbstractWeights, vardim=1; mean=nothing, corrected=false) Compute the weighted covariance matrix. Similar to `var` and `std` the biased covariance matrix (`corrected=false`) is computed by multiplying `scattermat(X, w)` by @@ -64,7 +64,7 @@ cov """ - mean_and_cov(x, [wv::AbstractWeights]; vardim=1, corrected=false) -> (mean, cov) + mean_and_cov(x, [wv::AbstractWeights,] vardim=1; corrected=false) -> (mean, cov) Return the mean and covariance matrix as a tuple. A weighting vector `wv` can be specified. `vardim` that designates whether