-
Notifications
You must be signed in to change notification settings - Fork 25
/
oeis.py
823 lines (629 loc) · 21.6 KB
/
oeis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
"""Implementation of a few integer sequences from the OEIS."""
import argparse
import math
import sys
from decimal import Decimal, localcontext
from functools import lru_cache, reduce
from itertools import count
from random import choice, random
from typing import Callable, Dict, Iterable, Iterator, List, Sequence, Union, overload
# Version format is YYYY.MM.DD (https://calver.org/)
__version__ = "2023.3.10"
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser(description="Print a sweet sweet sequence")
parser.add_argument(
"sequence",
type=str,
help="Define the sequence to run (e.g.: A181391)",
nargs="?",
)
parser.add_argument("--list", action="store_true", help="List implemented series")
parser.add_argument(
"--start",
type=int,
default=None,
help="Define the starting point of the sequence.",
)
parser.add_argument(
"--stop", type=int, help="End point of the sequence (excluded).", default=20
)
parser.add_argument(
"--plot", action="store_true", help="Print a sweet sweet sweet graph"
)
parser.add_argument("--random", action="store_true", help="Pick a random sequence")
parser.add_argument(
"--file", help="Write a png of the sequence's plot to the given png file."
)
parser.add_argument(
"--dark-plot", action="store_true", help="Print a dark dark dark graph"
)
return parser.parse_args()
SerieGenerator = Callable[..., Iterable[int]]
class IntegerSequence: # pylint: disable=too-few-public-methods
"""This class holds information for a integer sequence.
Its name, its description, a function to generate its values, and
provide a nice cached access to it.
"""
def __init__(self, offset, **kwargs):
"""Build a new integer sequence starting at the given offset."""
self.offset = offset
super().__init__(**kwargs)
def check_key(self, key):
"""Check the given key is correct knowing the sequence offset."""
if key < self.offset:
raise IndexError(
f"{type(self).__name__} starts at offset {self.offset}, not {key}."
)
def check_slice(self, key: slice) -> slice:
"""Check if the given slice is correct knowing the sequence offset.
Returns a new slice object taking the offset into account.
"""
start = key.start or 0
if key.stop is None:
raise IndexError("Infinite slices of sequences is not implemented yet.")
if key.start is None and self.offset != 0:
raise IndexError(
f"Not providing a start index for {type(self).__name__} is "
f"ambiguous, as it starts at offset {self.offset}."
)
if start < self.offset:
raise IndexError(
f"{type(self).__name__} starts at offset {self.offset}, not {start}."
)
return slice(start - self.offset, key.stop - self.offset, key.step)
@overload
def __getitem__(self, key: int) -> int:
"""Return a value from an integer sequence."""
@overload
def __getitem__(self, key: slice) -> Sequence[int]:
"""Return a slice from an integer sequence."""
def __getitem__(self, key: Union[int, slice]) -> Union[int, Sequence[int]]:
"""Return a slice or a value from an integer sequence."""
raise NotImplementedError
def __iter__(self) -> Iterator[int]:
"""Iterate over the integer sequence."""
for i in count(self.offset):
yield self[i]
class IntegerSequenceFromGenerator(IntegerSequence):
"""IntegerSequence based on a generator.
Can be used like:
>>> s = IntegerSequenceFromGenerator(source=count)
>>> s[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
"""
def __init__(self, source: SerieGenerator, **kwargs) -> None:
"""Build a new sequence."""
self._source = source
self._source_iterator = iter(source())
self._known: List[int] = []
super().__init__(**kwargs)
def __iter__(self) -> Iterator[int]:
"""Iterate over an integer sequence."""
return iter(self._source())
def _extend(self, n: int) -> None:
"""Grow the serie."""
while len(self._known) < n:
try:
self._known.append(next(self._source_iterator))
except StopIteration:
break
@overload
def __getitem__(self, key: int) -> int:
"""Return a value from an integer sequence."""
@overload
def __getitem__(self, key: slice) -> Sequence[int]:
"""Return a slice from an integer sequence."""
def __getitem__(self, key: Union[int, slice]) -> Union[int, Sequence[int]]:
"""Return a value from the sequence (or a slice of it)."""
if isinstance(key, slice):
key = self.check_slice(key)
self._extend(key.stop)
return self._known[key]
self.check_key(key)
try:
return next(iter(self._source(start=key - self.offset)))
except TypeError:
pass
self._extend(key + 1)
return self._known[key - self.offset]
class IntegerSequenceFromFunction(
IntegerSequence
): # pylint: disable=too-few-public-methods
"""IntegerSequence based on a function.
Can be used like:
>>> s = IntegerSequenceFromFunction(source=lambda x: x)
>>> s[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
"""
def __init__(self, source: Callable[[int], int], **kwargs) -> None:
"""Build a new sequence."""
self._source = lru_cache(maxsize=4096)(source)
self._known: List[int] = []
super().__init__(**kwargs)
@overload
def __getitem__(self, key: int) -> int:
"""Return a value from an integer sequence."""
@overload
def __getitem__(self, key: slice) -> Sequence[int]:
"""Return a slice from an integer sequence."""
def __getitem__(self, key: Union[int, slice]) -> Union[int, Sequence[int]]:
"""Return a value from the sequence (or a slice of it)."""
if isinstance(key, slice):
self.check_slice(key)
return [
self._source(i) for i in range(key.start or 0, key.stop, key.step or 1)
]
self.check_key(key)
return self._source(key)
class OEISRegistry:
"""A dict-like object to store OEIS sequences.
Used as a decorator, wrapping simple generators to full
IntegerSequence instances.
"""
def __init__(self) -> None:
"""Initialize an empty registry."""
self.series: Dict[str, IntegerSequence] = {}
def __getitem__(self, key: str) -> IntegerSequence:
"""Return a sequence by name."""
return self.series[key]
def print_list(self) -> None:
"""Print a list of OEIS series.
Like:
- A000004 Return an array of n occurence of 0
- A000005 d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.
- ...
"""
for name, sequence in sorted(self.series.items(), key=lambda kvp: kvp[0]):
if sequence.__doc__:
print(
"-", name, sequence.__doc__.replace("\n", " ").replace(" ", " ")
)
def from_(self, wrapper_type, to_wrap, offset=0):
"""Register a new integer sequence, wrapping it in wrapper_type."""
wrapped = type(
to_wrap.__name__,
(wrapper_type,),
{"__doc__": to_wrap.__doc__},
)(to_wrap, offset=offset)
self.series[to_wrap.__name__] = wrapped
return wrapped
def from_function(
self, offset=0
) -> Callable[[Callable[[int], int]], IntegerSequenceFromFunction]:
"""Register a new integer sequence, implemented as a function."""
def wrapper(function: Callable[[int], int]):
return self.from_(IntegerSequenceFromFunction, function, offset)
return wrapper
def from_generator(
self, offset=0
) -> Callable[[SerieGenerator], IntegerSequenceFromGenerator]:
"""Register a new integer sequence, implemented as a generator."""
def wrapper(function: SerieGenerator) -> IntegerSequenceFromGenerator:
return self.from_(IntegerSequenceFromGenerator, function, offset)
return wrapper
oeis = OEISRegistry()
@oeis.from_function(offset=1)
def A000037(n: int) -> int:
"""Give Numbers that are not squares (or, the nonsquares).
a(n) = A000194(n) + n = floor(1/2 *(1 + sqrt(4*n-3))) + n.
- Jaroslav Krizek, Jun 14 2009
"""
from math import floor, sqrt
return floor(1 / 2 * (1 + sqrt(4 * n - 3))) + n
@oeis.from_generator(offset=1)
def A181391() -> Iterable[int]:
"""Van Eck's sequence.
For n >= 1, if there exists an m < n such that a(m) = a(n), take
the largest such m and set a(n+1) = n-m; otherwise a(n+1) =
0. Start with a(1)=0.
"""
last_pos: Dict[int, int] = {}
yield 0
cur_value = 0
for i in count():
next_value = i - last_pos.get(cur_value, i)
last_pos[cur_value] = i
yield next_value
cur_value = next_value
@oeis.from_function(offset=1)
def A006577(n: int) -> int:
"""Give the number of halving and tripling steps to reach 1 in '3x+1' problem."""
x = 0
while n > 1:
if n % 2 == 0:
n //= 2
else:
n = 3 * n + 1
x += 1
return x
@oeis.from_function()
def A000290(n: int) -> int:
"""Squares numbers: a(n) = n^2."""
return n**2
@oeis.from_function()
def A000079(n: int) -> int:
"""Powers of 2: a(n) = 2^n."""
return 2**n
@oeis.from_function(offset=1)
def A001221(n: int) -> int:
"""omage(n).
Number of distinct primes dividing n.
"""
from sympy.ntheory import primefactors
return len(primefactors(n))
@oeis.from_generator()
def A000045() -> Iterable[int]:
"""Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1."""
a, b = (0, 1)
while True:
yield a
a, b = b, a + b
@oeis.from_generator()
def A000032() -> Iterable[int]:
"""Lucas numbers beginning at 2: L(n) = L(n-1) + L(n-2), L(0) = 2, L(1) = 1."""
a, b = (2, 1)
while True:
yield a
a, b = b, a + b
@oeis.from_function()
def A000119(n: int) -> int:
"""Give the number of representations of n as a sum of distinct Fib. numbers."""
def f(x, y, z):
if x < y:
return 0**x
return f(x - y, y + z, y) + f(x, y + z, y)
return f(n, 1, 1)
@oeis.from_function()
def A000121(n: int) -> int:
"""Give Number of representations of n as a sum of Fibonacci numbers.
(1 is allowed twice as a part).
a(0) = 1; for n >= 1, a(n) = A000119(n) + A000119(n-1). - Peter Munn, Jan 19 2018
"""
if n == 0:
return 1
return A000119[n] + A000119[n - 1]
@oeis.from_generator()
def A115020() -> Iterable[int]:
"""Count backwards from 100 in steps of 7."""
for i in range(100, 0, -7):
yield i
@oeis.from_function(offset=1)
def A000040(n: int) -> int:
"""Primes number."""
from sympy import sieve
return sieve[n]
@oeis.from_function(offset=1)
def A023811(n: int) -> int:
"""Largest metadrome.
(number with digits in strict ascending order) in base n.
"""
result = 0
for i, j in enumerate(range(n - 2, -1, -1), start=1):
result += i * n**j
return result
@oeis.from_function(offset=1)
def A000010(n: int) -> int:
"""Euler totient function phi(n): count numbers <= n and prime to n."""
numbers = []
i = 0
for i in range(n):
if math.gcd(i, n) == 1:
numbers.append(i)
return len(numbers)
@oeis.from_function()
def A000142(n: int) -> int:
"""Factorial numbers: n! = 1*2*3*4*...*n.
(order of symmetric group S_n, number of permutations of n letters).
"""
return math.factorial(n)
@oeis.from_function()
def A000217(n: int):
"""Triangular numbers: a(n) = binomial(n+1,2) = n(n+1)/2 = 0 + 1 + 2 + ... + n."""
return n * (n + 1) // 2
@oeis.from_function()
def A008592(n: int) -> int:
"""Multiples of 10: a(n) = 10 * n."""
return 10 * n
@oeis.from_function()
def A000041(n: int) -> int:
"""Parittion numbers.
a(n) is the number of partitions of n (the partition numbers).
"""
parts = [0] * (n + 1)
parts[0] = 1
for value in range(1, n + 1):
for j in range(value, n + 1):
parts[j] += parts[j - value]
return parts[n]
@oeis.from_generator(offset=1)
def A001220() -> Iterable[int]:
"""Wieferich primes: primes p such that p^2 divides 2^(p-1) - 1."""
yield 1093
yield 3511
# No other has been found yet...
# for i in count(3512):
# if i in sieve and (2 ** (i - 1) - 1) % (i ** 2) == 0:
# yield i
@oeis.from_function()
def A008587(n: int) -> int:
"""Multiples of 5."""
return n * 5
@oeis.from_function()
def A008589(n: int) -> int:
"""Multiples of 7."""
return n * 7
@oeis.from_function()
def A000110(n: int) -> int:
"""Bell or exponential numbers.
Number of ways to partition a set of n labeled elements.
"""
bell = [[0 for i in range(n + 1)] for j in range(n + 1)]
bell[0][0] = 1
for i in range(1, n + 1):
bell[i][0] = bell[i - 1][i - 1]
for j in range(1, i + 1):
bell[i][j] = bell[i - 1][j - 1] + bell[i][j - 1]
return bell[n][0]
@oeis.from_function(offset=1)
def A000203(i: int) -> int:
"""Give sum of the divisors of n.
a(n) = sigma(n). Also called sigma_1(n).
"""
divisor_sum = 0
for j in range(1, int(math.sqrt(i)) + 1):
if i % j == 0:
divisor_sum += j
if i // j != j:
divisor_sum += i // j
return divisor_sum
@oeis.from_function()
def A000004(n: int) -> int: # pylint: disable=unused-argument
"""Return an infinite sequence of 0."""
return 0
@oeis.from_function()
def A001246(n: int) -> int:
"""Squares of Catalan numbers."""
return A000108[n] ** 2 # pylint: disable=unsubscriptable-object
@oeis.from_function()
def A001247(n: int) -> int:
"""Squares of Bell number."""
return A000110[n] ** 2 # pylint: disable=unsubscriptable-object
@oeis.from_generator()
def A133058() -> Iterable[int]:
"""« Fly straight, dammit » sequence.
a(0)=a(1)=1; for n>1, a(n) = a(n-1) + n + 1 if a(n-1) and n are coprime,
otherwise a(n) = a(n-1)/gcd(a(n-1),n).
"""
last = 1
yield 1
yield 1
for i in count(2):
if (math.gcd(i, last)) == 1:
last = last + i + 1
else:
last = int(last / math.gcd(last, i))
yield last
@oeis.from_function(offset=1)
def A000005(i: int) -> int:
"""d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n."""
divisors = 0
for j in range(1, int(math.sqrt(i)) + 1):
if i % j == 0:
if i / j == j:
divisors += 1
else:
divisors += 2
return divisors
@oeis.from_function()
def A000108(i: int) -> int:
"""Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).
Also called Segner numbers.
"""
return math.factorial(2 * i) // math.factorial(i) ** 2 // (i + 1)
@oeis.from_function()
def A007953(n: int) -> int:
"""Digital sum (i.e., sum of digits) of n; also called digsum(n)."""
return sum(int(d) for d in str(n))
@oeis.from_function(offset=1)
def A265326(n: int) -> int:
"""Give n-th prime minus its binary reversal."""
from sympy.ntheory import prime
p = prime(n)
pbinrev = int(bin(p)[:1:-1], 2)
return p - pbinrev
@oeis.from_function()
def A000120(n: int) -> int:
"""1's-counting sequence.
number of 1's in binary expansion of n (or the binary weight of
n).
"""
return f"{n:b}".count("1")
@oeis.from_generator(offset=1)
def A001622() -> Iterable[int]:
"""Decimal expansion of golden ratio phi (or tau) = (1 + sqrt(5))/2."""
with localcontext() as ctx:
ctx.prec = 10
start = 0
while True:
ctx.prec *= 10
phi = (1 + Decimal(5).sqrt()) / 2
for n in range(start, ctx.prec - 1):
yield math.floor(phi * 10**n) % 10
start = n + 1
@oeis.from_function(offset=1)
def A007947(i: int) -> int:
"""Largest squarefree number dividing n.
The squarefree kernel of n, rad(n), radical of n.
"""
from sympy.ntheory import primefactors
if i < 2:
return 1
return reduce(lambda x, y: x * y, primefactors(i))
@oeis.from_function()
def A000326(n: int) -> int:
"""Pentagonal numbers: a(n) = n*(3*n-1)/2."""
return n * (3 * n - 1) // 2
@oeis.from_function(offset=1)
def A165736(n: int) -> int:
"""Give n^n^n^... modulo 10^10."""
x = n
for t in range(1, 11):
x = pow(n, x, pow(10, t))
return x
@oeis.from_generator(offset=1)
def A001462() -> Iterable[int]:
"""Golomb sequence."""
sequence = [0, 1, 2, 2]
for term in sequence[1:]:
yield term
n = 3
while True:
new_terms = [n for i in range(sequence[n])]
for term in new_terms:
yield term
sequence.extend(new_terms)
n += 1
@oeis.from_function()
def A004767(n: int) -> int:
"""Integers of a(n) = 4*n + 3."""
return 4 * n + 3
@oeis.from_function()
def A004086(i: int) -> int:
"""Digit reversal of i."""
result = 0
while i > 0:
unit = i % 10
result = result * 10 + unit
i = i // 10
return result
@oeis.from_function(offset=0)
def A008588(i: int) -> int:
"""Nonnegative multiples of 6."""
return i * 6
@oeis.from_generator(offset=1)
def A001969() -> Iterable[int]:
"""Evil numbers: numbers with an even number of 1's in their binary expansion."""
return (i for i in count() if f"{i:b}".count("1") % 2 == 0)
@oeis.from_function(offset=1)
def A064367(n: int) -> int:
"""Show result of a(n) = 2^n mod prime(n).
Or 2^n = k*prime(n) + a(n) with integer k.
"""
from sympy.ntheory import prime
return 2**n % prime(n)
@oeis.from_function()
def A007089(n: int) -> int:
"""Numbers in base 3."""
if n == 0:
return 0
digits: list = []
while n:
n, r = divmod(n, 3)
digits += str(r)
o = "".join(reversed(digits))
return int(o)
@oeis.from_function()
def A002275(n: int) -> int:
"""Repunits: (10^n - 1)/9. Often denoted by R_n."""
if n == 0:
return 0
return int("1" * n)
@oeis.from_function()
def A133613(i):
"""Last digits of the graham number."""
x = 3
for t in range(1, i + 2):
x = pow(3, x, pow(10, t))
z = x // pow(10, int(t - 1))
return z
@oeis.from_generator(offset=1)
def A183613() -> Iterable[int]:
"""Backward concatenation of A133613.
a(n) = 3^^(n+1) modulo 10^n.
"""
concatenation = 0
for i in iter(A133613):
concatenation = concatenation * 10 + i
yield int(str(concatenation)[::-1])
@oeis.from_function()
def A070939(i: int = 0) -> int:
"""Length of binary representation of n."""
return len(f"{i:b}")
@oeis.from_function(offset=1)
def A001223(n: int) -> int:
"""Gaps between primes."""
return A000040[n + 1] - A000040[n]
@oeis.from_generator(offset=1)
def A002182() -> Iterable[int]:
"""Highly composite numbers.
numbers n where d(n), the number of divisors of n (A000005), increases to a record.
"""
record = 0
from sympy import divisor_count
yield 1
for n in count(2, 2):
divisors = divisor_count(n)
if divisors > record:
record = divisors
yield n
@oeis.from_generator(offset=0)
def A065722() -> Iterable[int]:
"""Primes that when written in base 4, then reinterpreted in base 10, again give primes."""
for p in A000040: # pylint: disable=not-an-iterable
# Refer: https://github.com/pylint-dev/pylint/issues/9251
if _is_patterson_prime(p):
yield p
def _is_patterson_prime(n):
import numpy as np
from sympy.ntheory import isprime
base_four_repr = np.base_repr(n, base=4)
base_ten_repr = int(base_four_repr)
return isprime(base_ten_repr)
def main() -> None: # pylint: disable=too-many-branches
"""Command line entry point."""
args = parse_args()
if args.list:
oeis.print_list()
return
if args.random:
args.sequence = choice(list(oeis.series.keys()))
if not args.sequence:
print(
"No sequence given, please see oeis --help, or try oeis --random",
file=sys.stderr,
)
sys.exit(1)
if args.sequence not in oeis.series:
print("Unimplemented serie", file=sys.stderr)
sys.exit(1)
sequence = oeis.series[args.sequence]
if args.start is None:
args.start = sequence.offset
if args.start < sequence.offset:
print(f"{args.sequence} starts at offset {sequence.offset}", file=sys.stderr)
sys.exit(1)
serie = sequence[args.start : args.stop]
if args.plot: # pragma: no cover
import matplotlib.pyplot as plt
plt.scatter(list(range(len(serie))), serie)
plt.show()
elif args.dark_plot: # pragma: no cover
import matplotlib.pyplot as plt
colors = []
for _i in range(len(serie)):
colors.append(random())
with plt.style.context("dark_background"):
plt.scatter(list(range(len(serie))), serie, s=50, c=colors, alpha=0.5)
plt.show()
else:
print("#", args.sequence, end="\n\n")
print(oeis.series[args.sequence].__doc__, end="\n\n")
print(*serie, sep=", ")
if args.file:
import matplotlib.pyplot as plt
plt.scatter(list(range(len(serie))), serie)
plt.savefig(args.file)
print(f"Graph printed in {args.file}")
if __name__ == "__main__":
main()