forked from Jasonkks/PTTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_tracking.py
270 lines (233 loc) · 10.1 KB
/
train_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import os
import random
import time
import logging
import pdb
from tqdm import tqdm
import numpy as np
import scipy.io as sio
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
from Dataset import SiameseTrain
from pointnet2.models import get_model
parser = argparse.ArgumentParser()
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--nepoch', type=int, default=160, help='number of epochs to train for')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate at t=0')
parser.add_argument('--input_feature_num', type=int, default = 0, help='number of input point features')
parser.add_argument('--data_dir', type=str, default = './data/kitti', help='dataset path')
parser.add_argument('--category_name', type=str, default = 'Car', help='Object to Track (Car/Pedestrian/Van/Cyclist)')
parser.add_argument('--save_root_dir', type=str, default='results', help='output folder')
parser.add_argument('--model', type=str, default = '', help='model name for training resume')
parser.add_argument('--optimizer', type=str, default = '', help='optimizer name for training resume')
parser.add_argument('--tiny', type=bool, default=False)
parser.add_argument('--input_size', type=int, default=1024)
parser.add_argument('--save_interval', type=int, default=1)
opt = parser.parse_args()
if opt.category_name == 'Ped':
opt.category_name = 'Pedestrian'
if opt.category_name == 'Cyc':
opt.category_name = 'Cyclist'
print(opt)
opt.manualSeed = 1
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
save_dir = opt.save_root_dir
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S', \
filename=os.path.join(save_dir, 'train.log'), level=logging.INFO)
logging.info('======================================================')
# 1. Load data
train_data = SiameseTrain(
input_size=opt.input_size,
path= opt.data_dir,
split='Train' if not opt.tiny else 'TinyTrain',
category_name=opt.category_name,
offset_BB=0.1, # opt.offset,
scale_BB=1.0) # opt.scale)
train_dataloader = torch.utils.data.DataLoader(
train_data,
batch_size=opt.batchSize,
shuffle=True,
num_workers=int(opt.workers),
pin_memory=True)
test_data = SiameseTrain(
input_size=opt.input_size,
path=opt.data_dir,
split='Valid' if not opt.tiny else 'TinyValid',
category_name=opt.category_name,
offset_BB=0.1, # opt.offset,
scale_BB=1.0) # opt.scale)
test_dataloader = torch.utils.data.DataLoader(
test_data,
batch_size=int(opt.batchSize // 2),
shuffle=False,
num_workers=int(opt.workers),
pin_memory=True)
print('#Train data:', len(train_data), '#Test data:', len(test_data))
netR = get_model(name='T', # opt.type,
input_channels=opt.input_feature_num,
use_xyz=True,
input_size=opt.input_size)
netR = torch.nn.DataParallel(netR)
if opt.model != '':
netR.load_state_dict(torch.load(os.path.join(save_dir, opt.model)))
netR.cuda()
# print(netR)
criterion_cla = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1.0])).cuda()
criterion_reg = nn.MSELoss(reduction='none').cuda()
criterion_objective = nn.BCEWithLogitsLoss(
pos_weight=torch.tensor([2.0]),
reduction='none').cuda()
criterion_box = nn.MSELoss(reduction='none').cuda()
optimizer = optim.Adam(netR.parameters(),
lr=opt.learning_rate,
betas=(0.5, 0.999),
eps=1e-6)
if opt.optimizer != '':
optimizer.load_state_dict(torch.load(os.path.join(save_dir, opt.optimizer)))
scheduler = lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.2)
def one_sample_step(input_dict, model, optimizer, train=True):
optimizer.zero_grad()
output_dict = model(input_dict)
label_cla = output_dict['cls_label']
label_reg = output_dict['reg_label']
estimation_cla = output_dict['estimation_cla']
estimation_reg = output_dict['estimation_reg'] # vote xyz
estimation_box = output_dict['estimation_box']
center_xyz = output_dict['center_xyz'] # candi
loss_cla = criterion_cla(estimation_cla, label_cla)
# vote -> box center
loss_reg = criterion_reg(estimation_reg, label_reg[:, :, 0:3]) # 16x128x3
loss_reg = (loss_reg.mean(2) * label_cla).sum() / (label_cla.sum() + 1e-06)
K = center_xyz.shape[1]
dist = torch.sum((center_xyz - label_reg[:, :, 0:3]) ** 2, dim=-1)
dist = torch.sqrt(dist + 1e-6)
B = dist.size(0)
objectness_mask = torch.ones((B, K), requires_grad=False).float().cuda()
objectness_label = label_cla
box_mask = label_cla
loss_objective = criterion_objective(estimation_box[:, :, 4], objectness_label)
loss_objective = torch.sum(loss_objective * objectness_mask) / (torch.sum(objectness_mask) + 1e-6)
loss_box = criterion_box(estimation_box[:, :, 0:4], label_reg[:, 0:K, :])
loss_box = (loss_box.mean(2) * box_mask).sum() / (box_mask.sum() + 1e-06)
loss = loss_cla + loss_reg + 1.0 * loss_box + 1.0 * loss_objective
if train:
loss.backward()
optimizer.step()
estimation_cla_cpu = estimation_cla.sigmoid().detach().cpu().numpy()
label_cla_cpu = label_cla.detach().cpu().numpy()
correct = float(np.sum((
estimation_cla_cpu > 0.4) == label_cla_cpu)
) / label_cla_cpu.size
true_correct = float(np.sum(
(np.float32(estimation_cla_cpu > 0.4)
+ label_cla_cpu) == 2)) \
/ np.sum(label_cla_cpu)
return {
'correct' : correct,
'true_correct' : true_correct,
'loss_cla' : loss_cla,
'loss_reg' : loss_reg,
'loss_box' : loss_box,
'loss_objective' : loss_objective,
'loss' : loss
}
for epoch in range(opt.nepoch):
scheduler.step(epoch)
print('======>>>>> Online epoch: #%d, lr=%f <<<<<======' %(epoch, scheduler.get_lr()[0]))
# 3.1 switch to train mode
# torch.cuda.synchronize()
netR.train()
train_mse = 0.0
timer = time.time()
batch_correct = 0.0
batch_cla_loss = 0.0
batch_reg_loss = 0.0
batch_box_loss = 0.0
batch_num = 0.0
batch_iou = 0.0
batch_true_correct = 0.0
for i, input_dict in enumerate(tqdm(train_dataloader, 0)):
if len(input_dict['search']) == 1:
continue
# torch.cuda.synchronize()
# 3.1.1 load inputs and targets
for k, v in input_dict.items():
input_dict[k] = Variable(v, requires_grad=False).cuda()
output_dict = one_sample_step(input_dict, netR, optimizer)
correct = output_dict['correct']
true_correct = output_dict['true_correct']
loss_cla = output_dict['loss_cla']
loss_reg = output_dict['loss_reg']
loss = output_dict['loss']
train_mse = train_mse + loss.data * len(input_dict['search'])
batch_correct += correct
batch_cla_loss += loss_cla.data
batch_reg_loss += loss_reg.data
batch_num += 1 # len(input_dict['search'])
batch_true_correct += true_correct
if (i + 1) % 20 == 0:
print('\n ---- batch: %03d ----' % (i+1))
print('cla_loss: %f, reg_loss: %f, box_loss: %f' %
(batch_cla_loss/20,batch_reg_loss/20,batch_box_loss/20))
print('accuracy: %f' % (batch_correct / float(batch_num)))
print('true accuracy: %f' % (batch_true_correct / float(batch_num)))
batch_correct = 0.0
batch_cla_loss = 0.0
batch_reg_loss = 0.0
batch_box_loss = 0.0
batch_num = 0.0
batch_true_correct = 0.0
# time taken
train_mse = train_mse / len(train_data)
timer = time.time() - timer
timer = timer / len(train_data)
print('==> time to learn 1 sample = %f (ms)' %(timer*1000))
if epoch and (epoch % opt.save_interval == 0 or epoch == opt.nepoch-1):
torch.save(netR.state_dict(), '%s/netR_%d.pth' % (save_dir, epoch))
# 3.2 switch to evaluate mode
netR.eval()
test_cla_loss = 0.0
test_reg_loss = 0.0
test_box_loss = 0.0
test_correct = 0.0
test_true_correct = 0.0
timer = time.time()
for i, data in enumerate(tqdm(test_dataloader, 0)):
for k, v in input_dict.items():
input_dict[k] = Variable(v, requires_grad=False).cuda()
with torch.no_grad():
output_dict = one_sample_step(input_dict, netR, optimizer, train=False)
correct = output_dict['correct']
true_correct = output_dict['true_correct']
test_correct += correct
test_true_correct += true_correct
# time taken
timer = time.time() - timer
timer = timer / len(test_data)
print('==> time to learn 1 sample = %f (ms)' %(timer*1000))
# print mse
test_cla_loss = test_cla_loss / len(test_data)
test_reg_loss = test_reg_loss / len(test_data)
test_box_loss = test_box_loss / len(test_data)
print('cla_loss: %f, reg_loss: %f, box_loss: %f, #test_data = %d' %
(test_cla_loss, test_reg_loss, test_box_loss, len(test_data)))
test_correct = test_correct / len(test_dataloader)
print('mean-correct of 1 sample: %f, #test_data = %d' %(test_correct, len(test_data)))
test_true_correct = test_true_correct / len(test_dataloader)
print('true correct of 1 sample: %f' %(test_true_correct))
# log
logging.info('Epoch#%d: train error=%e, test error=%e,%e,%e, test correct=%e, %e, lr = %f' %
(epoch, train_mse, test_cla_loss, test_reg_loss, test_box_loss,
test_correct, test_true_correct, scheduler.get_lr()[0]))