-
Notifications
You must be signed in to change notification settings - Fork 1
/
vole.c
189 lines (159 loc) · 5.64 KB
/
vole.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
* SPDX-License-Identifier: MIT
*/
#if defined(HAVE_CONFIG_H)
#include <config.h>
#endif
#include "vole.h"
#include "aes.h"
#include "utils.h"
#include "random_oracle.h"
#include <stdbool.h>
#if !defined(FAEST_TESTS)
static
#endif
void
ConvertToVole(const uint8_t* iv, const uint8_t* sd, bool sd0_bot, unsigned int lambda,
unsigned int depth, unsigned int outLenBytes, uint8_t* u, uint8_t* v) {
const unsigned int num_instances = 1 << depth;
const unsigned int lambda_bytes = lambda / 8;
// (depth + 1) x num_instances array of outLenBytes; but we only need to rows at a time
uint8_t* r = calloc(2 * num_instances, outLenBytes);
#define R(row, column) (r + (((row) % 2) * num_instances + (column)) * outLenBytes)
#define V(idx) (v + (idx)*outLenBytes)
// Step: 2
if (!sd0_bot) {
prg(sd, iv, R(0, 0), lambda, outLenBytes);
}
// Step: 3..4
for (unsigned int i = 1; i < num_instances; i++) {
prg(sd + (lambda_bytes * i), iv, R(0, i), lambda, outLenBytes);
}
// Step: 5..9
memset(v, 0, depth * outLenBytes);
for (unsigned int j = 0; j < depth; j++) {
unsigned int depthloop = num_instances >> (j + 1);
for (unsigned int i = 0; i < depthloop; i++) {
xor_u8_array(V(j), R(j, 2 * i + 1), V(j), outLenBytes);
xor_u8_array(R(j, 2 * i), R(j, 2 * i + 1), R(j + 1, i), outLenBytes);
}
}
// Step: 10
if (!sd0_bot && u != NULL) {
memcpy(u, R(depth, 0), outLenBytes);
}
free(r);
}
int ChalDec(const uint8_t* chal, unsigned int i, unsigned int k0, unsigned int t0, unsigned int k1,
unsigned int t1, uint8_t* chalout) {
if (i >= t0 + t1) {
return 0;
}
unsigned int lo;
unsigned int hi;
if (i < t0) {
lo = i * k0;
hi = ((i + 1) * k0);
} else {
unsigned int t = i - t0;
lo = (t0 * k0) + (t * k1);
hi = (t0 * k0) + ((t + 1) * k1);
}
assert(hi - lo == k0 || hi - lo == k1);
for (unsigned int j = lo; j < hi; ++j) {
// set_bit(chalout, i - lo, get_bit(chal, i));
chalout[j - lo] = ptr_get_bit(chal, j);
}
return 1;
}
void vole_commit(const uint8_t* rootKey, const uint8_t* iv, unsigned int ellhat,
const faest_paramset_t* params, uint8_t* hcom, vec_com_t* vecCom, uint8_t* c,
uint8_t* u, uint8_t** v) {
unsigned int lambda = params->faest_param.lambda;
unsigned int lambda_bytes = lambda / 8;
unsigned int ellhat_bytes = (ellhat + 7) / 8;
unsigned int tau = params->faest_param.tau;
unsigned int tau0 = params->faest_param.t0;
unsigned int k0 = params->faest_param.k0;
unsigned int k1 = params->faest_param.k1;
uint8_t* ui = malloc(tau * ellhat_bytes);
// Step 1
uint8_t* expanded_keys = malloc(tau * lambda_bytes);
prg(rootKey, iv, expanded_keys, lambda, lambda_bytes * tau);
// for Step 12
H1_context_t h1_ctx;
H1_init(&h1_ctx, lambda);
unsigned int v_idx = 0;
for (unsigned int i = 0; i < tau; i++) {
// Step 4
unsigned int depth = i < tau0 ? k0 : k1;
// Step 5
vector_commitment(expanded_keys + i * lambda_bytes, iv, params, lambda, &vecCom[i], depth);
// Step 6
ConvertToVole(iv, vecCom[i].sd, false, lambda, depth, ellhat_bytes, ui + i * ellhat_bytes,
v[v_idx]);
// Step 7 (and parts of 8)
v_idx += depth;
// Step 12 (part)
H1_update(&h1_ctx, vecCom[i].h, lambda_bytes * 2);
}
free(expanded_keys);
// Step 9
memcpy(u, ui, ellhat_bytes);
for (unsigned int i = 1; i < tau; i++) {
// Step 11
xor_u8_array(u, ui + i * ellhat_bytes, c + (i - 1) * ellhat_bytes, ellhat_bytes);
}
free(ui);
// Step 12: Generating final commitment from all the com commitments
H1_final(&h1_ctx, hcom, lambda_bytes * 2);
}
void vole_reconstruct(const uint8_t* iv, const uint8_t* chall, const uint8_t* const* pdec,
const uint8_t* const* com_j, uint8_t* hcom, uint8_t** q, unsigned int ellhat,
const faest_paramset_t* params) {
unsigned int lambda = params->faest_param.lambda;
unsigned int lambda_bytes = lambda / 8;
unsigned int ellhat_bytes = (ellhat + 7) / 8;
unsigned int tau = params->faest_param.tau;
unsigned int tau0 = params->faest_param.t0;
unsigned int tau1 = params->faest_param.t1;
unsigned int k0 = params->faest_param.k0;
unsigned int k1 = params->faest_param.k1;
uint8_t* sd = malloc((1 << MAX(k0, k1)) * lambda_bytes);
memset(sd, 0, lambda_bytes);
// Step 9
H1_context_t h1_ctx;
H1_init(&h1_ctx, lambda);
vec_com_rec_t vecComRec;
vecComRec.h = malloc(lambda_bytes * 2);
vecComRec.k = calloc(getBinaryTreeNodeCount(MAX(k0, k1)), lambda_bytes);
vecComRec.com = malloc((1 << MAX(k0, k1)) * lambda_bytes * 2);
vecComRec.s = malloc((1 << MAX(k0, k1)) * lambda_bytes);
// Step: 1
unsigned int q_idx = 0;
for (unsigned int i = 0; i < tau; i++) {
// Step: 2
unsigned int depth = i < tau0 ? k0 : k1;
unsigned int N = 1 << depth;
// Step 3
uint8_t chalout[MAX_DEPTH];
ChalDec(chall, i, k0, tau0, k1, tau1, chalout);
// Step 4
unsigned int idx = NumRec(depth, chalout);
// Step 5
vector_reconstruction(iv, pdec[i], com_j[i], chalout, lambda, depth, &vecComRec);
// Step: 6
for (unsigned int j = 1; j < N; j++) {
memcpy(sd + j * lambda_bytes, vecComRec.s + (lambda_bytes * (j ^ idx)), lambda_bytes);
}
// Step: 7..8
ConvertToVole(iv, sd, true, lambda, depth, ellhat_bytes, NULL, q[q_idx]);
q_idx += depth;
// Step 9
H1_update(&h1_ctx, vecComRec.h, lambda_bytes * 2);
}
vec_com_rec_clear(&vecComRec);
free(sd);
// Step: 9
H1_final(&h1_ctx, hcom, lambda_bytes * 2);
}