forked from CIMCB/cimcb_lite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BaseModel.py
285 lines (244 loc) · 14.1 KB
/
BaseModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from abc import ABC, abstractmethod, abstractproperty
import numpy as np
import pandas as pd
import scipy
from bokeh.layouts import widgetbox, gridplot, column, row, layout
from bokeh.models import HoverTool, Band
from bokeh.models.widgets import DataTable, Div, TableColumn
from bokeh.models.annotations import Title
from bokeh.plotting import ColumnDataSource, figure, output_notebook, show
from scipy import interp
from sklearn import metrics
from sklearn.utils import resample
from ..bootstrap import Perc, BC, BCA
from ..plot import scatter, scatterCI, boxplot, distribution, permutation_test, roc_calculate, roc_plot
from ..utils import binary_metrics
class BaseModel(ABC):
"""Base class for models: PLS_SIMPLS."""
@abstractmethod
def __init__(self):
pass
@abstractmethod
def train(self):
"""Trains the model."""
pass
@abstractmethod
def test(self):
"""Tests the model."""
pass
@abstractproperty
def bootlist(self):
"""A list of attributes for bootstrap resampling."""
pass
def evaluate(self, testset=None, specificity=False, cutoffscore=False, bootnum=1000):
"""Plots a figure containing a Violin plot, Distribution plot, ROC plot and Binary Metrics statistics.
Parameters
----------
testset : array-like, shape = [n_samples, 2] or None, (default None)
If testset is None, use train Y and train Y predicted for evaluate. Alternatively, testset is used to evaluate model in the format [Ytest, Ypred].
specificity : number or False, (default False)
Use the specificity to draw error bar. When False, use the cutoff score of 0.5.
cutoffscore : number or False, (default False)
Use the cutoff score to draw error bar. When False, use the specificity selected.
bootnum : a positive integer, (default 1000)
The number of bootstrap samples used in the computation.
"""
Ytrue_train = self.Y
Yscore_train = self.Y_pred.flatten()
# Get Ytrue_test, Yscore_test from testset
if testset is not None:
Ytrue_test = np.array(testset[0])
Yscore_test = np.array(testset[1])
# Error checking
if len(Ytrue_test) != len(Yscore_test):
raise ValueError("evaluate can't be used as length of Ytrue does not match length of Yscore in test set.")
if len(np.unique(Ytrue_test)) != 2:
raise ValueError("Ytrue_test needs to have 2 groups. There is {}".format(len(np.unique(Y))))
if np.sort(np.unique(Ytrue_test))[0] != 0:
raise ValueError("Ytrue_test should only contain 0s and 1s.")
if np.sort(np.unique(Ytrue_test))[1] != 1:
raise ValueError("Ytrue_test should only contain 0s and 1s.")
# Get Yscore_combined and Ytrue_combined_name (Labeled Ytrue)
Yscore_combined = np.concatenate([Yscore_train, Yscore_test])
Ytrue_combined = np.concatenate([Ytrue_train, Ytrue_test + 2]) # Each Ytrue per group is unique
Ytrue_combined_name = Ytrue_combined.astype(np.str)
Ytrue_combined_name[Ytrue_combined == 0] = "Train (0)"
Ytrue_combined_name[Ytrue_combined == 1] = "Train (1)"
Ytrue_combined_name[Ytrue_combined == 2] = "Test (0)"
Ytrue_combined_name[Ytrue_combined == 3] = "Test (1)"
# Expliclity states which metric and value is used for the error_bar
if specificity is not False:
metric = "specificity"
val = specificity
elif cutoffscore is not False:
metric = "cutoffscore"
val = cutoffscore
else:
metric = "specificity"
val = 0.8
# ROC plot
tpr, fpr, tpr_ci, stats, stats_bootci = roc_calculate(Ytrue_train, Yscore_train, bootnum=100, metric=metric, val=val)
roc_title = "Specificity: {}".format(np.round(stats["val_specificity"], 2))
roc_bokeh = roc_plot(tpr, fpr, tpr_ci, width=320, height=315, title=roc_title, errorbar=stats["val_specificity"])
if testset is not None:
fpr_test, tpr_test, threshold_test = metrics.roc_curve(Ytrue_test, Yscore_test, pos_label=1, drop_intermediate=False)
fpr_test = np.insert(fpr_test, 0, 0)
tpr_test = np.insert(tpr_test, 0, 0)
roc_bokeh.line(fpr_test, tpr_test, color="red", line_width=3.5, alpha=0.6, legend="ROC Curve (Test)") # Add ROC Curve(Test) to roc_bokeh
# Violin plot
violin_title = "Cut-off: {}".format(np.round(stats["val_cutoffscore"], 2))
if testset is None:
violin_bokeh = boxplot(Yscore_train, Ytrue_train, xlabel="Class", ylabel="Predicted Score", violin=True, color=["#FFCCCC", "#CCE5FF"], width=320, height=315, title=violin_title, font_size="11pt")
else:
violin_bokeh = boxplot(Yscore_combined, Ytrue_combined_name, xlabel="Class", ylabel="Predicted Score", violin=True, color=["#fcaeae", "#aed3f9", "#FFCCCC", "#CCE5FF"], width=320, height=315, group_name=["Train (0)", "Test (0)", "Train (1)", "Test (1)"], group_name_sort=["Test (0)", "Test (1)", "Train (0)", "Train (1)"], title=violin_title, font_size="11pt")
violin_bokeh.multi_line([[-100, 100]], [[stats["val_cutoffscore"], stats["val_cutoffscore"]]], line_color="black", line_width=2, line_alpha=1.0, line_dash="dashed")
# Distribution plot
if testset is None:
dist_bokeh = distribution(Yscore_train, group=Ytrue_train, kde=True, title="", xlabel="Predicted Score", ylabel="p.d.f.", width=320, height=315)
else:
dist_bokeh = distribution(Yscore_combined, group=Ytrue_combined_name, kde=True, title="", xlabel="Predicted Score", ylabel="p.d.f.", width=320, height=315)
dist_bokeh.multi_line([[stats["val_cutoffscore"], stats["val_cutoffscore"]]], [[-100, 100]], line_color="black", line_width=2, line_alpha=1.0, line_dash="dashed")
# Man-Whitney U for Table (round and use scienitic notation if p-value > 0.001)
manw_pval = scipy.stats.mannwhitneyu(Yscore_train[Ytrue_train == 0], Yscore_train[Ytrue_train == 1], alternative="two-sided")[1]
if manw_pval > 0.001:
manw_pval_round = "%0.2f" % manw_pval
else:
manw_pval_round = "%0.2e" % manw_pval
if testset is not None:
testmanw_pval = scipy.stats.mannwhitneyu(Yscore_test[Ytrue_test == 0], Yscore_test[Ytrue_test == 1], alternative="two-sided")[1]
if testmanw_pval > 0.001:
testmanw_pval_round = "%0.2f" % testmanw_pval
else:
testmanw_pval_round = "%0.2e" % testmanw_pval
# Create a stats table for test
if testset is not None:
teststats = binary_metrics(Ytrue_test, Yscore_test, cut_off=stats["val_cutoffscore"])
teststats_round = {}
for i in teststats.keys():
teststats_round[i] = np.round(teststats[i], 2)
# Round stats, and stats_bootci for Table
stats_round = {}
for i in stats.keys():
stats_round[i] = np.round(stats[i], 2)
bootci_round = {}
for i in stats_bootci.keys():
bootci_round[i] = np.round(stats_bootci[i], 2)
# Create table
tabledata = dict(
evaluate=[["Train"]],
manw_pval=[["{}".format(manw_pval_round)]],
auc=[["{} ({}, {})".format(stats_round["AUC"], bootci_round["AUC"][0], bootci_round["AUC"][1])]],
accuracy=[["{} ({}, {})".format(stats_round["ACCURACY"], bootci_round["ACCURACY"][0], bootci_round["ACCURACY"][1])]],
precision=[["{} ({}, {})".format(stats_round["PRECISION"], bootci_round["PRECISION"][0], bootci_round["PRECISION"][1])]],
sensitivity=[["{} ({}, {})".format(stats_round["SENSITIVITY"], bootci_round["SENSITIVITY"][0], bootci_round["SENSITIVITY"][1])]],
specificity=[["{} ({}, {})".format(stats_round["SPECIFICITY"], bootci_round["SPECIFICITY"][0], bootci_round["SPECIFICITY"][1])]],
F1score=[["{} ({}, {})".format(stats_round["F1-SCORE"], bootci_round["F1-SCORE"][0], bootci_round["F1-SCORE"][1])]],
R2=[["{} ({}, {})".format(stats_round["R²"], bootci_round["R²"][0], bootci_round["R²"][1])]],
)
# Append test data
if testset is not None:
tabledata["evaluate"].append(["Test"])
tabledata["manw_pval"].append([testmanw_pval_round])
tabledata["auc"].append([teststats_round["AUC"]])
tabledata["accuracy"].append([teststats_round["ACCURACY"]])
tabledata["precision"].append([teststats_round["PRECISION"]])
tabledata["sensitivity"].append([teststats_round["SENSITIVITY"]])
tabledata["specificity"].append([teststats_round["SPECIFICITY"]])
tabledata["F1score"].append([teststats_round["F1-SCORE"]])
tabledata["R2"].append([teststats_round["R²"]])
# Plot table
source = ColumnDataSource(data=tabledata)
columns = [TableColumn(field="evaluate", title="Evaluate"), TableColumn(field="manw_pval", title="MW-U Pvalue"), TableColumn(field="R2", title="R2"), TableColumn(field="auc", title="AUC"), TableColumn(field="accuracy", title="Accuracy"), TableColumn(field="precision", title="Precision"), TableColumn(field="sensitivity", title="Sensitivity"), TableColumn(field="F1score", title="F1score")]
table_bokeh = widgetbox(DataTable(source=source, columns=columns, width=950, height=90), width=950, height=80)
# Title
if specificity is not False:
title = "Specificity fixed to: {}".format(np.round(val, 2))
elif cutoffscore is not False:
title = "Score cut-off fixed to: {}".format(np.round(val, 2))
else:
title = "Specificity fixed to: {}".format(np.round(val, 2))
title_bokeh = "<h3>{}</h3>".format(title)
# Combine table, violin plot and roc plot into one figure
fig = layout([[violin_bokeh, dist_bokeh, roc_bokeh], [table_bokeh]], toolbar_location="right")
output_notebook()
show(column(Div(text=title_bokeh, width=900, height=50), fig))
def calc_bootci(self, bootnum=100, type="bca"):
"""Calculates bootstrap confidence intervals based on bootlist.
Parameters
----------
bootnum : a positive integer, (default 100)
The number of bootstrap samples used in the computation.
type : 'bc', 'bca', 'perc', (default 'bca')
Methods for bootstrap confidence intervals. 'bc' is bias-corrected bootstrap confidence intervals. 'bca' is bias-corrected and accelerated bootstrap confidence intervals. 'perc' is percentile confidence intervals.
"""
bootlist = self.bootlist
if type is "bca":
boot = BCA(self, self.X, self.Y, self.bootlist, bootnum=bootnum)
if type is "bc":
boot = BC(self, self.X, self.Y, self.bootlist, bootnum=bootnum)
if type is "perc":
boot = Perc(self, self.X, self.Y, self.bootlist, bootnum=bootnum)
self.bootci = boot.run()
def plot_featureimportance(self, PeakTable, peaklist=None, ylabel="Label", sort=True):
"""Plots feature importance metrics.
Parameters
----------
PeakTable : DataFrame
Peak sheet with the required columns.
peaklist : list or None, (default None)
Peaks to include in plot (the default is to include all samples).
ylabel : string, (default "Label")
Name of column in PeakTable to use as the ylabel.
sort : boolean, (default True)
Whether to sort plots in absolute descending order.
Returns
-------
Peaksheet : DataFrame
New PeakTable with added "Coef" and "VIP" columns (+ "Coef-95CI" and "VIP-95CI" if calc_bootci is used prior to plot_featureimportance).
"""
if not hasattr(self, "bootci"):
print("Use method calc_bootci prior to plot_featureimportance to add 95% confidence intervals to plots.")
ci_coef = None
ci_vip = None
else:
ci_coef = self.bootci["model.coef_"]
ci_vip = self.bootci["model.vip_"]
# Remove rows from PeakTable if not in peaklist
if peaklist is not None:
PeakTable = PeakTable[PeakTable["Name"].isin(peaklist)]
peaklabel = PeakTable[ylabel]
peaklabel = peaklabel.apply(str)
# Plot
fig_1 = scatterCI(self.model.coef_, ci=ci_coef, label=peaklabel, hoverlabel=PeakTable[["Idx", "Name", "Label"]], hline=0, col_hline=True, title="Coefficient Plot", sort_abs=sort)
fig_2 = scatterCI(self.model.vip_, ci=ci_vip, label=peaklabel, hoverlabel=PeakTable[["Idx", "Name", "Label"]], hline=1, col_hline=False, title="Variable Importance in Projection (VIP)", sort_abs=sort)
fig = layout([[fig_1], [fig_2]])
output_notebook()
show(fig)
# Return table with: Idx, Name, Label, Coefficient, 95CI, VIP, 95CI
if not hasattr(self, "bootci"):
coef = pd.DataFrame([self.model.coef_]).T
coef.rename(columns={0: "Coef"}, inplace=True)
vip = pd.DataFrame([self.model.vip_]).T
vip.rename(columns={0: "VIP"}, inplace=True)
else:
coef = pd.DataFrame([self.model.coef_, self.bootci["model.coef_"]]).T
coef.rename(columns={0: "Coef", 1: "Coef-95CI"}, inplace=True)
vip = pd.DataFrame([self.model.vip_, self.bootci["model.vip_"]]).T
vip.rename(columns={0: "VIP", 1: "VIP-95CI"}, inplace=True)
Peaksheet = PeakTable.copy()
Peaksheet["Coef"] = coef["Coef"].values
Peaksheet["VIP"] = vip["VIP"].values
if hasattr(self, "bootci"):
Peaksheet["Coef-95CI"] = coef["Coef-95CI"].values
Peaksheet["VIP-95CI"] = vip["VIP-95CI"].values
return Peaksheet
def permutation_test(self, nperm=100):
"""Plots permutation test figures.
Parameters
----------
nperm : positive integer, (default 100)
Number of permutations.
"""
fig = permutation_test(self, self.X, self.Y, nperm=nperm)
output_notebook()
show(fig)