-
Notifications
You must be signed in to change notification settings - Fork 137
/
train.py
781 lines (708 loc) · 34.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
import json
import logging
import math
import os
import time
from contextlib import suppress
import numpy as np
import torch
import torch.nn.functional as F
try:
import wandb
except ImportError:
wandb = None
from clap_module import ClipLoss, gather_features
from .distributed import is_master
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def unwrap_model(model):
if hasattr(model, "module"):
return model.module
else:
return model
def train_one_epoch(
model, data, epoch, optimizer, scaler, scheduler, args, tb_writer=None
):
device = torch.device(args.device)
autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress
model.train()
loss = ClipLoss(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod,
mlp_loss=args.clap_mlploss,
weight_loss_kappa=args.kappa,
)
dataloader, sampler = data["train"].dataloader, data["train"].sampler
if args.distributed and sampler is not None:
sampler.set_epoch(epoch)
num_batches_per_epoch = dataloader.num_batches
sample_digits = math.ceil(math.log(dataloader.num_samples + 1, 10))
# for toy dataset
if args.dataset_type == "toy":
dataloader.dataset.generate_queue()
loss_m = AverageMeter()
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
for i, batch in enumerate(dataloader):
# logging.info(f"batch {i} of {num_batches_per_epoch}")
step = num_batches_per_epoch * epoch + i
if isinstance(scheduler, dict):
for s in scheduler.values():
s(step)
else:
scheduler(step)
audios = batch # contains mel_spec, wavform, and longer list
texts = batch['text']
# audios = audios.to(device=device, non_blocking=True)
# texts = texts.to(device=device, non_blocking=True)
data_time_m.update(time.time() - end)
if isinstance(optimizer, dict):
for o_ in optimizer.values():
o_.zero_grad()
else:
optimizer.zero_grad()
with autocast():
(
audio_features,
text_features,
audio_features_mlp,
text_features_mlp,
logit_scale_a,
logit_scale_t,
) = model(audios, texts, device)
if args.clap_mlploss:
total_loss = loss(
audio_features=audio_features,
text_features=text_features,
logit_scale_a=logit_scale_a,
logit_scale_t=logit_scale_t,
audio_features_mlp=audio_features_mlp,
text_features_mlp=text_features_mlp
)
else:
total_loss = loss(
audio_features=audio_features,
text_features=text_features,
logit_scale_a=logit_scale_a
)
if isinstance(optimizer, dict):
if scaler is not None:
scaler.scale(total_loss).backward()
for o_ in optimizer.values():
if args.horovod:
o_.synchronize()
scaler.unscale_(o_)
with o_.skip_synchronize():
scaler.step(o_)
else:
scaler.step(o_)
scaler.update()
else:
total_loss.backward()
for o_ in optimizer.values():
o_.step()
else:
if scaler is not None:
scaler.scale(total_loss).backward()
if args.horovod:
optimizer.synchronize()
scaler.unscale_(optimizer)
with optimizer.skip_synchronize():
scaler.step(optimizer)
else:
scaler.step(optimizer)
scaler.update()
else:
total_loss.backward()
optimizer.step()
# Note: we clamp to 4.6052 = ln(100), as in the original paper.
with torch.no_grad():
unwrap_model(model).logit_scale_a.clamp_(0, math.log(100))
if args.clap_mlploss:
unwrap_model(model).logit_scale_t.clamp_(0, math.log(100))
batch_time_m.update(time.time() - end)
end = time.time()
batch_count = i + 1
if is_master(args) and (i % 100 == 0 or batch_count == num_batches_per_epoch):
if isinstance(audios, dict):
batch_size = len(audios["waveform"])
else:
batch_size = len(audios)
num_samples = batch_count * batch_size * args.world_size
samples_per_epoch = dataloader.num_samples
percent_complete = 100.0 * batch_count / num_batches_per_epoch
# NOTE loss is coarsely sampled, just master node and per log update
loss_m.update(total_loss.item(), batch_size)
logit_scale_scalar_a = logit_scale_a.item()
logit_scale_scalar_t = logit_scale_t.item()
if isinstance(optimizer, dict):
if args.clap_mlploss:
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f} "
f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]} "
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}"
f"Logit Scale Text: {logit_scale_scalar_t:.3f}"
)
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"scale_audio": logit_scale_scalar_a,
"scale_text": logit_scale_scalar_t,
"lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()],
}
else:
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f} "
f"LR: {[o_.param_groups[0]['lr'] for o_ in optimizer.values()]} "
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}"
)
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"scale_audio": logit_scale_scalar_a,
"lr": [o_.param_groups[0]["lr"] for o_ in optimizer.values()],
}
else:
if args.clap_mlploss:
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f} "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}"
f"Logit Scale Text: {logit_scale_scalar_t:.3f}"
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"scale_audio": logit_scale_scalar_a,
"scale_text": logit_scale_scalar_t,
"lr": optimizer.param_groups[0]["lr"],
}
else:
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Loss: {loss_m.val:#.5g} ({loss_m.avg:#.4g}) "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f} "
f"LR: {optimizer.param_groups[0]['lr']:5f} "
f"Logit Scale Audio: {logit_scale_scalar_a:.3f}"
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"loss": loss_m.val,
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"scale_audio": logit_scale_scalar_a,
"lr": optimizer.param_groups[0]["lr"],
}
for name, val in log_data.items():
name = "train/" + name
if tb_writer is not None:
tb_writer.add_scalar(name, val, step)
if args.wandb:
assert wandb is not None, "Please install wandb."
wandb.log({name: val, "step": step})
# resetting batch / data time meters per log window
batch_time_m.reset()
data_time_m.reset()
# end for
def evaluate(model, data, epoch, args, tb_writer=None):
metrics = {}
if not args.parallel_eval:
if not is_master(args):
return metrics
device = torch.device(args.device)
model.eval()
# CHANGE
# zero_shot_metrics = zero_shot_eval(model, data, epoch, args)
# metrics.update(zero_shot_metrics)
if is_master(args):
print('Evaluating...')
autocast = torch.cuda.amp.autocast if args.precision == "amp" else suppress
if args.val_dataset_names == ['Clotho', 'audiocaps']:
# if only clotho and audiocaps are used, then we will use a different evaluation function.
# This is because in the Clotho and audiocaps valid and test set, there are 5 text for 1 audio.
if args.parallel_eval:
# (yusong): just a hack here. Don't use parallel eval when evaluating only clotho and audiocaps.
raise NotImplementedError("Parallel evaluation not supported for eval only Clotho and audiocaps.")
val_metrics_per_dataset = evaluate_clotho_audiocaps(model, data, epoch, args, autocast, device, tb_writer)
for m in val_metrics_per_dataset.values():
metrics.update(m)
if "epoch" not in metrics.keys():
metrics.update({"epoch": epoch})
metrics = select_top_metric_clotho_audiocaps(metrics, val_metrics_per_dataset, args)
elif "val" in data and (
args.val_frequency
and ((epoch % args.val_frequency) == 0 or epoch == args.epochs)
):
dataloader = data["val"].dataloader
num_samples = 0
samples_per_val = dataloader.num_samples
# FIXME this does not scale past small eval datasets
# all_audio_features @ all_text_features will blow up memory and compute very quickly
eval_info = {}
if args.clap_mlploss:
eval_info["all"] = {
"cumulative_loss": 0.0,
"num_samples": 0,
"all_audio_features": [],
"all_text_features": [],
"all_audio_features_mlp": [],
"all_text_features_mlp": []
} # cumulative_loss = 0.0
else:
eval_info["all"] = {
"cumulative_loss": 0.0,
"num_samples": 0,
"all_audio_features": [],
"all_text_features": []
} # cumu
# all_audio_features, all_text_features, all_audio_features_mlp, all_text_features_mlp = [], [], [], []
with torch.no_grad():
for i, batch in enumerate(dataloader):
audios = batch # contains mel_spec, wavform, and longer list
texts = batch['text']
# audios = audios.to(device=device, non_blocking=True)
all_names = list(set(["-".join(b.split("/")[-3:-1]) for b in batch['__url__']]))
for name in all_names:
if name not in eval_info.keys():
if args.clap_mlploss:
eval_info[name] = {
"cumulative_loss": 0.0,
"num_samples": 0,
"all_audio_features": [],
"all_text_features": [],
"all_audio_features_mlp": [],
"all_text_features_mlp": [],
}
else:
eval_info[name] = {
"cumulative_loss": 0.0,
"num_samples": 0,
"all_audio_features": [],
"all_text_features": []
}
with autocast():
(
audio_features,
text_features,
audio_features_mlp,
text_features_mlp,
logit_scale_a,
logit_scale_t,
) = model(audios, texts, device)
if args.parallel_eval:
# multi-GPU eval
if args.clap_mlploss:
(
audio_features,
text_features,
audio_features_mlp,
text_features_mlp,
) = gather_features(
audio_features=audio_features,
text_features=text_features,
audio_features_mlp=audio_features_mlp,
text_features_mlp=text_features_mlp,
local_loss=False,
gather_with_grad=False,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod,
mlp_loss=args.clap_mlploss
)
else:
(
audio_features,
text_features,
) = gather_features(
audio_features=audio_features,
text_features=text_features,
local_loss=False,
gather_with_grad=False,
rank=args.rank,
world_size=args.world_size,
use_horovod=args.horovod,
mlp_loss=args.clap_mlploss
)
if is_master(args):
num_samples += audio_features.shape[0]
for n in [*all_names, "all"]:
if n == "all":
eval_info[n]["all_audio_features"].append(
audio_features.cpu()
)
eval_info[n]["all_text_features"].append(
text_features.cpu()
)
if args.clap_mlploss:
eval_info[n]["all_audio_features_mlp"].append(
audio_features_mlp.cpu()
)
eval_info[n]["all_text_features_mlp"].append(
text_features_mlp.cpu()
)
else:
idx = np.where(
np.array(
["-".join(b.split("/")[-3:-1]) for b in batch['__url__']]
)
== n
)[0]
eval_info[n]["all_audio_features"].append(
audio_features.cpu().index_select(
0, torch.tensor(idx).long()
)
)
eval_info[n]["all_text_features"].append(
text_features.cpu().index_select(
0, torch.tensor(idx).long()
)
)
if args.clap_mlploss:
eval_info[n]["all_audio_features_mlp"].append(
audio_features_mlp.cpu().index_select(
0, torch.tensor(idx).long()
)
)
eval_info[n]["all_text_features_mlp"].append(
text_features_mlp.cpu().index_select(
0, torch.tensor(idx).long()
)
)
# print(f'eval step {i}') # (yusong): for debug
# cumulative_loss += total_loss * batch_size
# num_samples += batch_size
if is_master(args) and (i % 100) == 0: # and i != 0:
logging.info(
f"Eval Epoch: {epoch} [{num_samples} / {samples_per_val}]"
)
if is_master(args):
val_metrics_per_dataset = {}
for n in eval_info.keys():
if args.clap_mlploss:
metrics_single_dataset = get_metrics(
audio_features=torch.cat(eval_info[n]["all_audio_features"]),
text_features=torch.cat(eval_info[n]["all_text_features"]),
logit_scale_a=logit_scale_a.cpu(),
audio_features_mlp=torch.cat(
eval_info[n]["all_audio_features_mlp"]
),
text_features_mlp=torch.cat(eval_info[n]["all_text_features_mlp"]),
logit_scale_t=logit_scale_t.cpu(),
mlp_loss=args.clap_mlploss
)
else:
metrics_single_dataset = get_metrics(
audio_features=torch.cat(eval_info[n]["all_audio_features"]),
text_features=torch.cat(eval_info[n]["all_text_features"]),
logit_scale_a=logit_scale_a.cpu(),
mlp_loss=args.clap_mlploss
)
val_metrics_per_dataset[n] = {
n + "/" + k: v for k, v in metrics_single_dataset.items()
}
metrics.update(val_metrics_per_dataset[n])
if "epoch" not in metrics.keys():
metrics.update({"epoch": epoch})
if is_master(args):
if not metrics:
return metrics
logging.info(
f"Eval Epoch: {epoch} "
+ "\n".join(
[
"\t".join([f"{k}: {round(v, 4):.4f}" for k, v in m.items()])
for m in val_metrics_per_dataset.values()
]
)
)
if args.save_logs:
for name, val in metrics.items():
if tb_writer is not None:
tb_writer.add_scalar(f"val/{name}", val, epoch)
with open(os.path.join(args.checkpoint_path, "results.jsonl"), "a+") as f:
f.write(json.dumps(metrics))
f.write("\n")
if args.wandb:
assert wandb is not None, "Please install wandb."
for name, val in metrics.items():
wandb.log({f"val/{name}": val, "epoch": epoch})
return metrics
else:
return metrics
def get_metrics(
audio_features,
text_features,
logit_scale_a,
audio_features_mlp=None,
text_features_mlp=None,
logit_scale_t=None,
mlp_loss=False
):
metrics = {}
if mlp_loss:
# Set up audio to text & text to audio similary matrice
a_logits_per_audio = (
(logit_scale_a * audio_features @ text_features_mlp.t()).detach().cpu()
)
a_logits_per_text = a_logits_per_audio.t().detach().cpu()
t_logits_per_audio = (
(logit_scale_t * audio_features_mlp @ text_features.t()).detach().cpu()
)
t_logits_per_text = t_logits_per_audio.t().detach().cpu()
labels = torch.arange(audio_features.shape[0]).long()
# Change the loss from two terms into four terms with 2x2 combined CE loss
total_loss = (
F.cross_entropy(a_logits_per_audio, labels)
+ F.cross_entropy(a_logits_per_text, labels)
+ F.cross_entropy(t_logits_per_audio, labels)
+ F.cross_entropy(t_logits_per_text, labels)
) / 4
metrics[f"cumulative_loss"] = total_loss.item()
metrics[f"num_samples"] = audio_features.shape[0]
logits = {
"audio_to_text": (a_logits_per_audio + t_logits_per_audio) / 2,
"text_to_audio": (a_logits_per_text + t_logits_per_text) / 2,
}
ground_truth = torch.arange(len(text_features)).view(-1, 1)
else:
# print("text_features", text_features)
# print("text_features.shape", text_features.shape)
logits_per_audio = (logit_scale_a * audio_features @ text_features.t()).detach().cpu()
logits_per_text = logits_per_audio.t().detach().cpu()
labels = torch.arange(audio_features.shape[0]).long()
# Change the loss from two terms into four terms with 2x2 combined CE loss
total_loss = (
F.cross_entropy(logits_per_audio, labels)
+ F.cross_entropy(logits_per_text, labels)
) / 2
metrics[f"cumulative_loss"] = total_loss.item()
metrics[f"num_samples"] = audio_features.shape[0]
logits = {"audio_to_text": logits_per_audio, "text_to_audio": logits_per_text}
ground_truth = torch.arange(len(text_features)).view(-1, 1)
for name, logit in logits.items():
ranking = torch.argsort(logit, descending=True)
preds = torch.where(ranking == ground_truth)[1] # (yusong) this line is slow because it uses single thread
preds = preds.detach().cpu().numpy()
metrics[f"{name}_mean_rank"] = preds.mean() + 1
metrics[f"{name}_median_rank"] = np.floor(np.median(preds)) + 1
for k in [1, 5, 10]:
metrics[f"{name}_R@{k}"] = np.mean(preds < k)
# map@10
metrics[f"{name}_mAP@10"] = np.mean(np.where(preds < 10, 1 / (preds + 1), 0.0))
return metrics
def evaluate_clotho_audiocaps(
model, data, epoch, args, autocast, device, tb_writer=None
):
"""
Adapted from https://github.com/XinhaoMei/audio-text_retrieval/blob/main/tools/utils.py.
1. for text-to-audio retrieval, do 5 times and average the results
2. for R@1, R@5, R@10 in audio-to-text retrieval, take the best rank among 5 text
3. for map@10 in audio-to-text retrieval:
3.1: sort the rank of 5 text
3.2: exclude the rank >=10 (0-index)
3.3: compute the map regarding the remaining ranks: np.mean(np.arange(1, len(ranks)+1) / ranks).
(3.3) That is, take the top ranks of 5 text that is < 10, and assign the descending number as ground truth.
(3.3) E.g.: the ground truth of first rank of the 5 text should be 1, the second rank should be 2, etc.
"""
# TODO: (yusong) only support single GPU evaluation and only support non-mlp case for now.
dataloader = data["val"].dataloader
with torch.no_grad():
eval_info = {}
for i, batch in enumerate(dataloader):
audios = batch # contains mel_spec, wavform, and longer list
# each item in the list has 5 texts
if args.tmodel == "transformer":
from clap_module import tokenize
texts = [tokenize(t) for t in batch['full_text']]
texts = torch.cat(texts)
else:
from .data import tokenizer
texts = [tokenizer(t, tmodel=args.tmodel) for t in batch['full_text']] # 5 texts for each audio
texts = {k: torch.cat([t[k] for t in texts]) for k in texts[0].keys()} # 5 x batch
# audios = audios.to(device=device, non_blocking=True)
# batch['__url__'] contains the path to the data tar this sample is from
# So, b.split("/")[-3:-1] will get you '<dataset_name>-<dataset-split>'
all_names = list(set(["-".join(b.split("/")[-3:-1]) for b in batch['__url__']]))
for name in all_names:
if name not in eval_info.keys():
# we will not use mlp outputs even if args.clap_mlploss=True
eval_info[name] = {
"cumulative_loss": 0.0,
"num_samples": 0,
"all_audio_features": [],
"all_text_features": []
}
with autocast():
audio_features = model(audios, None, device)
text_features = model(None, texts, device)
audio_features = F.normalize(audio_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
all_names = list(set(["-".join(b.split("/")[-3:-1]) for b in batch['__url__']]))
for n in all_names:
idx = np.where(
np.array(
["-".join(b.split("/")[-3:-1]) for b in batch['__url__']]
)
== n
)[0]
eval_info[n]["all_audio_features"].append(
audio_features.cpu().index_select(
0, torch.tensor(idx).long()
)
)
# (yusong) please double-check. This is for selecting 5 text features at once.
# because idx is a list of indices in size of num_samples,
# and text_features is a tensor of size (5*num_samples, dim)
# so we need to select 5 consecutive indices at once for a single index in idx.
eval_info[n]["all_text_features"].append(
text_features.cpu().reshape([-1, 5, text_features.shape[1]]).index_select(
0, torch.tensor(idx).long()
).reshape([-1, text_features.shape[1]])
)
val_metrics_all = {}
for n in eval_info.keys():
logit_scale_a, logit_scale_t = model(None, None, device)
logit_scale_a = logit_scale_a.cpu()
audio_features = torch.cat(eval_info[n]["all_audio_features"], dim=0)
text_features = torch.cat(eval_info[n]["all_text_features"], dim=0)
logits_per_audio = (logit_scale_a * audio_features @ text_features.t()).detach().cpu()
logits_per_text = logits_per_audio.t().detach().cpu()
# logits_per_audio shape: [num_samples, num_samples*5]
# logits_per_text shape: [num_samples*5, num_samples]
logging.info(f"dataset {n}, logits_per_audio shape: {logits_per_audio.shape}, "
f"logits_per_text shape: {logits_per_text.shape}")
metrics = {}
num_samples = audio_features.shape[0]
metrics[f"num_samples"] = num_samples
# (yusong) the following code is very important, please double-check:
# logits_per_audio.reshape(num_samples, num_samples, 5)[:, :, d]
# logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :]
# Those two are retrieving one of the 5 text for each audio.
labels = torch.arange(audio_features.shape[0]).long()
audio_to_text_loss = [
F.cross_entropy(
logits_per_audio.reshape(num_samples, num_samples, 5)[:, :, d], labels) for d in range(5)
]
text_to_audio_loss = [
F.cross_entropy(
logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :], labels) for d in range(5)
]
total_loss = (
np.mean(audio_to_text_loss) + np.mean(text_to_audio_loss)
) / 2
metrics[f"cumulative_loss"] = total_loss.item()
# text to audio: do 5 times
pred_text = []
for d in range(5):
logit = logits_per_text.reshape(num_samples, 5, num_samples)[:, d, :]
ground_truth = torch.arange(len(logit)).view(-1, 1)
ranking = torch.argsort(logit, descending=True) # [num_samples, num_samples]
preds = torch.where(ranking == ground_truth)[1]
pred_text.append(preds.detach().cpu().numpy())
pred_text_concat = np.concatenate(pred_text, axis=0) # [5*num_samples]
metrics[f"text_to_audio_mean_rank"] = pred_text_concat.mean() + 1
metrics[f"text_to_audio_median_rank"] = np.floor(np.median(pred_text_concat)) + 1
for k in [1, 5, 10]:
metrics[f"text_to_audio_R@{k}"] = np.mean(pred_text_concat < k)
# map@10
metrics[f"text_to_audio_mAP@10"] = np.mean(np.where(pred_text_concat < 10, 1 / (pred_text_concat + 1), 0.0))
# audio to text: take the best result
# for audio to text map 10, sort and assign descending ground truth.
# see https://github.com/XinhaoMei/audio-text_retrieval/blob/main/tools/utils.py#L103
# map@10
map_all = []
pred_audio_all = []
for d in range(num_samples):
# logits_per_audio: [num_samples, num_samples*5]
logit_single = logits_per_audio[d, :] # [5*num_samples]
# Ground-truth index: [d*5, d*5+1, d*5+2, d*5+3, d*5+4]
ranking = torch.argsort(logit_single, descending=True) # [5*num_samples]
# ranking: the index of first match, second match, ...
ground_truth = torch.arange(d * 5, d * 5 + 5)[None]
all_pred = torch.where(torch.stack([ranking] * 5) == ground_truth.view(-1, 1))[1]
min_pred = torch.min(all_pred)
pred_audio_all.append(min_pred.detach().cpu().numpy())
all_pred_filter = all_pred[all_pred < 10].detach().cpu().numpy()
# /5 because we have 5 text, so it means for the text rank >=10 we count as 0.
map_single = np.sum((np.arange(1, len(all_pred_filter) + 1) / (all_pred_filter + 1))) / 5
map_all.append(map_single)
metrics[f"audio_to_text_mAP@10"] = np.mean(map_all)
for k in [1, 5, 10]:
metrics[f"audio_to_text_R@{k}"] = np.mean(np.array(pred_audio_all) < k)
val_metrics_all[n] = {
n + "/" + k: v for k, v in metrics.items()
}
return val_metrics_all
def calculate_selection_performance_clotho_audiocaps(val_metrics_per_dataset):
"""
Calculate performance for Clotho+AudioCaps for model selection.
"""
selection_performance_all = []
for n in val_metrics_per_dataset.keys():
selection_performance = (val_metrics_per_dataset[n][f"{n}/audio_to_text_mAP@10"] +
val_metrics_per_dataset[n][f"{n}/text_to_audio_mAP@10"]) / 2
selection_performance_all.append(selection_performance)
return np.mean(selection_performance_all)
def select_top_metric_clotho_audiocaps(metrics, val_metrics_per_dataset, args):
# val_metrics_per_dataset: dict, key: dataset name, value: dict, key: metric name, value: metric value
# metrics: dict, key: metric name, value: metric value
# Hack: use args to save the top performance
if not hasattr(args, "top_selection_performance"):
selection_performance = calculate_selection_performance_clotho_audiocaps(val_metrics_per_dataset)
# TODO: write the if and else together
metric_update = {}
for n in val_metrics_per_dataset.keys():
for k in val_metrics_per_dataset[n].keys():
metric_update[k.split('/')[0] + '-top' + '/' + k.split('/')[1]] = val_metrics_per_dataset[n][k]
metric_update['top_selection_performance'] = selection_performance
metric_update['top-selection-epoch'] = metrics['epoch']
metrics.update(metric_update)
args.top_metric = metric_update
args.top_selection_performance = selection_performance
else:
selection_performance_new = calculate_selection_performance_clotho_audiocaps(val_metrics_per_dataset)
selection_performance_old = args.top_selection_performance
if selection_performance_new > selection_performance_old:
metric_update = {}
for n in val_metrics_per_dataset.keys():
for k in val_metrics_per_dataset[n].keys():
metric_update[k.split('/')[0] + '-top' + '/' + k.split('/')[1]] = val_metrics_per_dataset[n][k]
metric_update['top_selection_performance'] = selection_performance_new
metric_update['top-selection-epoch'] = metrics['epoch']
metrics.update(metric_update)
args.top_metric = metric_update
args.top_selection_performance = selection_performance_new
else:
metrics.update(args.top_metric)
return metrics