-
Notifications
You must be signed in to change notification settings - Fork 0
/
deepfool.py
101 lines (77 loc) · 3.31 KB
/
deepfool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import numpy as np
from torch.autograd import Variable
import torch as torch
import copy
from torch.autograd.gradcheck import zero_gradients
def deepfool(image, net, num_classes=10, overshoot=0.02, max_iter=50):
"""
:param image: Image of size HxWx3
:param net: network (input: images, output: values of activation **BEFORE** softmax).
:param num_classes: num_classes (limits the number of classes to test against, by default = 10)
:param overshoot: used as a termination criterion to prevent vanishing updates (default = 0.02).
:param max_iter: maximum number of iterations for deepfool (default = 50)
:return: minimal perturbation that fools the classifier, number of iterations that it required, new estimated_label and perturbed image
"""
is_cuda = torch.cuda.is_available()
if is_cuda:
print("Using GPU")
image = image.cuda()
net = net.cuda()
else:
print("Using CPU")
f_image = net.forward(Variable(image[None, :, :, :], requires_grad=True)).data.cpu().numpy().flatten()
I = (np.array(f_image)).flatten().argsort()[::-1]
I = I[0:num_classes]
#print('I: ')
#print(I)
label = I[0]
input_shape = image.cpu().numpy().shape
pert_image = copy.deepcopy(image)
w = np.zeros(input_shape)
r_tot = np.zeros(input_shape)
loop_i = 0
x = Variable(pert_image[None, :], requires_grad=True)
fs = net.forward(x)
fs_list = [fs[0,I[k]] for k in range(num_classes)]
k_i = label
run = True
while k_i == label and loop_i < max_iter:
pert = np.inf
fs[0, I[0]].backward(retain_graph=True)
grad_orig = x.grad.data.cpu().numpy().copy()
for k in range(1, num_classes):
zero_gradients(x)
#print('ik:')
#print(I[k])
fs[0, I[k]].backward(retain_graph=True)
#print(fs[0, I[k]])
cur_grad = x.grad.data.cpu().numpy().copy()
# set new w_k and new f_k
w_k = cur_grad - grad_orig
#print(fs)
f_k = (fs[0, I[k]] - fs[0, I[0]]).data.cpu().numpy()
#print(f_k)
pert_k = abs(f_k)/np.linalg.norm(w_k.flatten()) #for L inf norm use ord=np.inf as argument in norm function, for L1 norm ord=1
#print(pert_k)
# determine which w_k to use
if pert_k < pert:
pert = pert_k
w = w_k
#print(pert)
# compute r_i and r_tot
# Added 1e-4 for numerical stability
r_i = (pert+1e-4) * w / np.linalg.norm(w)
r_tot = np.float32(r_tot + r_i)
if is_cuda:
pert_image = image + (1+overshoot)*torch.from_numpy(r_tot).cuda()
pert = ((1 + overshoot) * torch.from_numpy(r_tot)).cuda()
else:
pert_image = image + (1+overshoot)*torch.from_numpy(r_tot)
pert = ((1 + overshoot) * torch.from_numpy(r_tot))
x = Variable(pert_image, requires_grad=True)
fs = net.forward(x)
k_i = np.argmax(fs.data.cpu().numpy().flatten())
newf_k = (fs[0, k_i] - fs[0, I[0]]).data.cpu().numpy()
loop_i += 1
r_tot = (1+overshoot)*r_tot
return r_tot, loop_i, label, k_i, pert_image, newf_k, #, dist